Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31995484

RESUMO

Unsupervised domain adaptation (uDA) models focus on pairwise adaptation settings where there is a single, labeled, source and a single target domain. However, in many real-world settings one seeks to adapt to multiple, but somewhat similar, target domains. Applying pairwise adaptation approaches to this setting may be suboptimal, as they fail to leverage shared information among multiple domains. In this work, we propose an information theoretic approach for domain adaptation in the novel context of multiple target domains with unlabeled instances and one source domain with labeled instances. Our model aims to find a shared latent space common to all domains, while simultaneously accounting for the remaining private, domain-specific factors. Disentanglement of shared and private information is accomplished using a unified information-theoretic approach, which also serves to establish a stronger link between the latent representations and the observed data. The resulting model, accompanied by an efficient optimization algorithm, allows simultaneous adaptation from a single source to multiple target domains. We test our approach on three challenging publicly-available datasets, showing that it outperforms several popular domain adaptation methods.

2.
Artigo em Inglês | MEDLINE | ID: mdl-29993690

RESUMO

We propose a Multi-Instance-Learning (MIL) approach for weakly-supervised learning problems, where a training set is formed by bags (sets of feature vectors or instances) and only labels at bag-level are provided. Specifically, we consider the Multi-Instance Dynamic-Ordinal-Regression (MI-DOR) setting, where the instance labels are naturally represented as ordinal variables and bags are structured as temporal sequences. To this end, we propose Multi-Instance Dynamic Ordinal Random Fields (MI-DORF). In this framework, we treat instance-labels as temporally-dependent latent variables in an Undirected Graphical Model. Different MIL assumptions are modelled via newly introduced high-order potentials relating bag and instance-labels within the energy function of the model. We also extend our framework to address the Partially-Observed MI-DOR problems, where a subset of instance labels are available during training.We show on the tasks of weakly-supervised facial behavior analysis, Facial Action Unit (DISFA dataset) and Pain (UNBC dataset) Intensity estimation, that the proposed framework outperforms alternative learning approaches. Furthermore, we show that MIDORF can be employed to reduce the data annotation efforts in this context by large-scale.

3.
Sci Robot ; 3(19)2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-33141688

RESUMO

Robots have the potential to facilitate future therapies for children on the autism spectrum. However, existing robots are limited in their ability to automatically perceive and respond to human affect, which is necessary for establishing and maintaining engaging interactions. Their inference challenge is made even harder by the fact that many individuals with autism have atypical and unusually diverse styles of expressing their affective-cognitive states. To tackle the heterogeneity in children with autism, we used the latest advances in deep learning to formulate a personalized machine learning (ML) framework for automatic perception of the children's affective states and engagement during robot-assisted autism therapy. Instead of using the traditional one-size-fits-all ML approach, we personalized our framework to each child using their contextual information (demographics and behavioral assessment scores) and individual characteristics. We evaluated this framework on a multimodal (audio, video, and autonomic physiology) data set of 35 children (ages 3 to 13) with autism, from two cultures (Asia and Europe), and achieved an average agreement (intraclass correlation) of ~60% with human experts in the estimation of affect and engagement, also outperforming nonpersonalized ML solutions. These results demonstrate the feasibility of robot perception of affect and engagement in children with autism and have implications for the design of future autism therapies.

4.
IEEE Trans Image Process ; 26(10): 4697-4711, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28678708

RESUMO

Most of existing models for facial behavior analysis rely on generic classifiers, which fail to generalize well to previously unseen data. This is because of inherent differences in source (training) and target (test) data, mainly caused by variation in subjects' facial morphology, camera views, and so on. All of these account for different contexts in which target and source data are recorded, and thus, may adversely affect the performance of the models learned solely from source data. In this paper, we exploit the notion of domain adaptation and propose a data efficient approach to adapt already learned classifiers to new unseen contexts. Specifically, we build upon the probabilistic framework of Gaussian processes (GPs), and introduce domain-specific GP experts (e.g., for each subject). The model adaptation is facilitated in a probabilistic fashion, by conditioning the target expert on the predictions from multiple source experts. We further exploit the predictive variance of each expert to define an optimal weighting during inference. We evaluate the proposed model on three publicly available data sets for multi-class (MultiPIE) and multi-label (DISFA, FERA2015) facial expression analysis by performing adaptation of two contextual factors: "where" (view) and "who" (subject). In our experiments, the proposed approach consistently outperforms: 1) both source and target classifiers, while using a small number of target examples during the adaptation and 2) related state-of-the-art approaches for supervised domain adaptation.


Assuntos
Face/diagnóstico por imagem , Expressão Facial , Distribuição Normal , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Bases de Dados Factuais , Humanos , Processamento de Imagem Assistida por Computador
5.
IEEE Trans Image Process ; 25(12): 5727-5742, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28113501

RESUMO

Automated analysis of facial expressions can benefit many domains, from marketing to clinical diagnosis of neurodevelopmental disorders. Facial expressions are typically encoded as a combination of facial muscle activations, i.e., action units. Depending on context, these action units co-occur in specific patterns, and rarely in isolation. Yet, most existing methods for automatic action unit detection fail to exploit dependencies among them, and the corresponding facial features. To address this, we propose a novel multi-conditional latent variable model for simultaneous fusion of facial features and joint action unit detection. Specifically, the proposed model performs feature fusion in a generative fashion via a low-dimensional shared subspace, while simultaneously performing action unit detection using a discriminative classification approach. We show that by combining the merits of both approaches, the proposed methodology outperforms existing purely discriminative/generative methods for the target task. To reduce the number of parameters, and avoid overfitting, a novel Bayesian learning approach based on Monte Carlo sampling is proposed, to integrate out the shared subspace. We validate the proposed method on posed and spontaneous data from three publicly available datasets (CK+, DISFA and Shoulder-pain), and show that both feature fusion and joint learning of action units leads to improved performance compared to the state-of-the-art methods for the task.

6.
IEEE Trans Pattern Anal Mach Intell ; 37(5): 944-58, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26353320

RESUMO

Modeling intensity of facial action units from spontaneously displayed facial expressions is challenging mainly because of high variability in subject-specific facial expressiveness, head-movements, illumination changes, etc. These factors make the target problem highly context-sensitive. However, existing methods usually ignore this context-sensitivity of the target problem. We propose a novel Conditional Ordinal Random Field (CORF) model for context-sensitive modeling of the facial action unit intensity, where the W5+ (who, when, what, where, why and how) definition of the context is used. While the proposed model is general enough to handle all six context questions, in this paper we focus on the context questions: who (the observed subject), how (the changes in facial expressions), and when (the timing of facial expressions and their intensity). The context questions who and howare modeled by means of the newly introduced context-dependent covariate effects, and the context question when is modeled in terms of temporal correlation between the ordinal outputs, i.e., intensity levels of action units. We also introduce a weighted softmax-margin learning of CRFs from data with skewed distribution of the intensity levels, which is commonly encountered in spontaneous facial data. The proposed model is evaluated on intensity estimation of pain and facial action units using two recently published datasets (UNBC Shoulder Pain and DISFA) of spontaneously displayed facial expressions. Our experiments show that the proposed model performs significantly better on the target tasks compared to the state-of-the-art approaches. Furthermore, compared to traditional learning of CRFs, we show that the proposed weighted learning results in more robust parameter estimation from the imbalanced intensity data.


Assuntos
Face/anatomia & histologia , Expressão Facial , Reconhecimento Automatizado de Padrão/métodos , Biologia Computacional , Humanos , Modelos Teóricos , Análise de Regressão , Dor de Ombro/fisiopatologia , Gravação em Vídeo
7.
IEEE Trans Image Process ; 24(1): 189-204, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25438312

RESUMO

Images of facial expressions are often captured from various views as a result of either head movements or variable camera position. Existing methods for multiview and/or view-invariant facial expression recognition typically perform classification of the observed expression using either classifiers learned separately for each view or a single classifier learned for all views. However, these approaches ignore the fact that different views of a facial expression are just different manifestations of the same facial expression. By accounting for this redundancy, we can design more effective classifiers for the target task. To this end, we propose a discriminative shared Gaussian process latent variable model (DS-GPLVM) for multiview and view-invariant classification of facial expressions from multiple views. In this model, we first learn a discriminative manifold shared by multiple views of a facial expression. Subsequently, we perform facial expression classification in the expression manifold. Finally, classification of an observed facial expression is carried out either in the view-invariant manner (using only a single view of the expression) or in the multiview manner (using multiple views of the expression). The proposed model can also be used to perform fusion of different facial features in a principled manner. We validate the proposed DS-GPLVM on both posed and spontaneously displayed facial expressions from three publicly available datasets (MultiPIE, labeled face parts in the wild, and static facial expressions in the wild). We show that this model outperforms the state-of-the-art methods for multiview and view-invariant facial expression classification, and several state-of-the-art methods for multiview learning and feature fusion.


Assuntos
Face/anatomia & histologia , Expressão Facial , Processamento de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Inteligência Artificial , Humanos , Distribuição Normal
8.
IEEE Trans Pattern Anal Mach Intell ; 35(6): 1357-69, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23599052

RESUMO

We propose a method for head-pose invariant facial expression recognition that is based on a set of characteristic facial points. To achieve head-pose invariance, we propose the Coupled Scaled Gaussian Process Regression (CSGPR) model for head-pose normalization. In this model, we first learn independently the mappings between the facial points in each pair of (discrete) nonfrontal poses and the frontal pose, and then perform their coupling in order to capture dependences between them. During inference, the outputs of the coupled functions from different poses are combined using a gating function, devised based on the head-pose estimation for the query points. The proposed model outperforms state-of-the-art regression-based approaches to head-pose normalization, 2D and 3D Point Distribution Models (PDMs), and Active Appearance Models (AAMs), especially in cases of unknown poses and imbalanced training data. To the best of our knowledge, the proposed method is the first one that is able to deal with expressive faces in the range from -45° to +45° pan rotation and -30° to +30° tilt rotation, and with continuous changes in head pose, despite the fact that training was conducted on a small set of discrete poses. We evaluate the proposed method on synthetic and real images depicting acted and spontaneously displayed facial expressions.


Assuntos
Fácies , Distribuição Normal , Algoritmos , Biometria/métodos , Cabeça/anatomia & histologia , Humanos , Aumento da Imagem , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA