Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15018, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951542

RESUMO

Many ferroelectric nematic liquid crystals, like one of the archetype materials, DIO, do not have a direct paraelectric N to ferroelectric NF phase transition, but exhibit yet another phase between N and NF. This phase has recently been proposed to be antiferroelectric, with a layered structure of alternating polarization normal to the average director and is sometimes referred to as Smectic ZA (SmZA). We have examined the SmZA phase in circularly rubbed (CR) cells, known to discriminate between the polar NF and the non-polar N phase from the configuration of disclination lines formed. We find that the ground state of SmZA has the same disclination configuration as the non-polar N phase, demonstrating that the SmZA phase is also non-polar, i.e., it has no net ferroelectric polarization. At the same time, the SmZA texture generally has a grainy appearance, which we suggest is partly a result of the frustration related to layered order combined with the imposed twist in CR cells. We discuss possible orientations of the smectic layers, depending on the alignment conditions. While a horizontal SmZA layer structure is always compatible with surface-induced twist, a vertical layer structure would tend to break up in a twisted bookshelf structure to match non-parallel alignment directions at the two surfaces.

2.
Adv Mater ; 35(13): e2209152, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683324

RESUMO

Tunable metal-insulator-metal (MIM) Fabry-Pérot (FP) cavities that can dynamically control light enable novel sensing, imaging and display applications. However, the realization of dynamic cavities incorporating stimuli-responsive materials poses a significant engineering challenge. Current approaches rely on refractive index modulation and suffer from low dynamic tunability, high losses, and limited spectral ranges, and require liquid and hazardous materials for operation. To overcome these challenges, a new tuning mechanism employing reversible mechanical adaptations of a polymer network is proposed, and dynamic tuning of optical resonances is demonstrated. Solid-state temperature-responsive optical coatings are developed by preparing a monodomain nematic liquid crystalline network (LCN) and are incorporated between metallic mirrors to form active optical microcavities. LCN microcavities offer large, reversible and highly linear spectral tuning of FP resonances reaching wavelength-shifts up to 40 nm via thermomechanical actuation while featuring outstanding repeatability and precision over more than 100 heating-cooling cycles. This degree of tunability allows for reversible switching between the reflective and the absorbing states of the device over the entire visible and near-infrared spectral regions, reaching large changes in reflectance with modulation efficiency ΔR = 79%.

3.
Sci Rep ; 11(1): 24411, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34949781

RESUMO

The recent discovery of spontaneously polar nematic liquid crystals-so-called ferroelectric nematics-more than a century after the first discussions about their possible existence-has attracted large interest, both from fundamental scientific and applicational points of view. However, the experimental demonstration of such a phase has, so-far, been non-trivial. Here I present a direct method for the experimental verification of a ferroelectric nematic liquid crystal phase. The method utilizes a single sample cell where the two substrates are linearly and circularly rubbed, respectively, and the ferroelectric nematic phase (NF) is revealed by the orientation of the resulting disclination lines in the cell.

4.
Langmuir ; 37(8): 2749-2758, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33577330

RESUMO

Recent studies have shown that lyotropic nematic liquid crystals (LLCs) are exceptional in their viscoelastic behavior. In particular, LLCs display a remarkable softness to twist deformations, which may lead to chiral director configurations under achiral confinement despite the absence of intrinsic chirality. The twisted escaped radial (TER) and the twisted polar (TP) are the two representative reflection symmetry breaking director configurations in the case of cylindrical confinement with homeotropic anchoring. We demonstrate how such reflection symmetry breaking of micellar LLCs under cylindrical confinement is affected by intrinsic chirality, introduced by the addition of a chiral dopant. Similarities and differences between the effects of intrinsic chirality on the defect-free TER configuration, and on the TP configuration incorporating two half-unit twist disclination lines, are discussed. In the TP case, topological constraints facilitate stable heterochiral systems even in the presence of a small amount of chiral dopant, with unusual regions of rapidly reversing handedness between homochiral domains. At moderate dopant concentrations, the TP structure becomes homochiral. At high dopant concentrations, for which the induced cholesteric pitch is much smaller than the diameter of the capillary, the cholesteric fingerprint structure develops.

5.
Proc Natl Acad Sci U S A ; 117(44): 27238-27244, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33067393

RESUMO

Recent measurements of the elastic constants in lyotropic chromonic liquid crystals (LCLCs) have revealed an anomalously small twist elastic constant compared to the splay and bend constants. Interestingly, measurements of the elastic constants in the micellar lyotropic liquid crystals (LLCs) that are formed by surfactants, by far the most ubiquitous and studied class of LLCs, are extremely rare and report only the ratios of elastic constants and do not include the twist elastic constant. By means of light scattering, this study presents absolute values of the elastic constants and their corresponding viscosities for the nematic phase of a standard LLC composed of disk-shaped micelles. Very different elastic moduli are found. While the splay elastic constant is in the typical range of 1.5 pN as is true in general for thermotropic nematics, the twist elastic constant is found to be one order of magnitude smaller (0.30 pN) and almost two orders of magnitude smaller than the bend elastic constant (21 pN). These results demonstrate that a small twist elastic constant is not restricted to the special case of LCLCs, but is true for LLCs in general. The reason for this extremely small twist elastic constant very likely originates with the flexibility of the assemblies that are the building blocks of both micellar and chromonic lyotropic liquid crystals.

6.
Chemistry ; 23(72): 18166-18170, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29155469

RESUMO

We experimentally demonstrate a fine control over the coupling strength of vibrational light-matter hybrid states by controlling the orientation of a nematic liquid crystal. Through an external voltage, the liquid crystal is seamlessly switched between two orthogonal directions. Using these features, for the first time, we demonstrate electrical switching and increased Rabi splitting through transition dipole moment alignment. The C-Nstr vibration on the liquid crystal molecule is coupled to a cavity mode, and FT-IR is used to probe the formed vibropolaritonic states. A switching ratio of the Rabi splitting of 1.78 is demonstrated between the parallel and the perpendicular orientation. Furthermore, the orientational order increases the Rabi splitting by 41 % as compared to an isotropic liquid. Finally, by examining the influence of molecular alignment on the Rabi splitting, the scalar product used in theoretical modeling between light and matter in the strong coupling regime is verified.

7.
Langmuir ; 33(23): 5852-5862, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28509558

RESUMO

Recently, the emergence of spontaneous reflection-symmetry-broken configurations in achiral chromonic liquid crystals confined in cylindrical capillaries with homeotropic anchoring at the cylinder walls was reported, namely, the so-called twisted-escaped radial (TER) and twisted planar polar (TPP) configurations. This new example of spontaneous reflection symmetry breaking in liquid crystals was attributed to the twist elastic modulus, which is known to be unusually small in comparison to the splay and bend moduli in the case of chromonic liquid crystals. We now report the experimental observation of reflection symmetry breaking in cylindrical capillaries in the case of a classical, achiral, and nonchromonic lyotropic liquid crystal forming a nematic phase of disklike micelles orienting homeotropically at the capillary walls. We observed the same chiral TER configuration, as well as a nonplanar twisted polar (TP) configuration. The TP configuration is characterized by two half-unit so-called twist disclinations, where the director twist around the line defects drives the formation of a double helix of the disclinations along the axis of the capillary. Additionally, there is a transverse twist between the two disclination lines with the same handedness as the axial twist. Similarities with and differences from the case of chromonic liquid crystals are discussed; in particular, we examine the conditions under which spontaneous reflection symmetry breaking occurs in the nonchromonic system. It seems that the chiral TER configuration can be stabilized by the presence of point defects.

8.
Langmuir ; 32(24): 6140-7, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27244587

RESUMO

Nematic liquid crystals (NLCs) form helical macroscopic structures through chiral induction when doped with chiral species. We describe a very simple, though highly sensitive method for determination of handedness and pitch of the induced twist in the case of very weak twisting powers of such chiral dopants. A tiny drop-typically less than 10 nL-of the chiral doped NLC is placed on a plate promoting a uniform planar surface anchoring of the liquid crystal director. At the curved NLC-air interface the anchoring is homeotropic and in the sessile droplets we get a locally twisted hybrid director structure with a disclination line extending across the droplet. The configuration of the disclination line (S-like or backwards S-like) reveals the sign of twisting power and extremely large pitch values in the range of 10 mm can easily be measured. We demonstrate the method using the standard NLC 4-cyano-4'-pentylbiphenyl (5CB), weakly doped with the chiral material 2-hydroxy-2-phenylacetic acid (mandelic acid).

9.
Philos Trans A Math Phys Eng Sci ; 371(1988): 20120258, 2013 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-23459961

RESUMO

Thin liquid crystalline shells surrounding and surrounded by aqueous phases can be conveniently produced using a nested capillary microfluidic system, as was first demonstrated by Fernandez-Nieves et al. in 2007. By choosing particular combinations of stabilizers in the internal and external phases, different types of alignment, uniform or hybrid, can be ensured within the shell. Here, we investigate shells in the nematic and smectic phases under varying boundary conditions, focusing in particular on textural transformations during phase transitions, on the interaction between topological defects in the director field and inclusions in the liquid crystal (LC), and on the possibility to relocate defects within the shell by rotating the shell in the gravitational field. We demonstrate that inclusions in a shell can seed defects that cannot form in a pristine shell, adding a further means of tuning the defect configuration, and that shells in which the internal aqueous phase is not density matched with the LC will gently rearrange the internal structure upon a rotation that changes the influence of gravity. Because the defects can act as anchor points for added linker molecules, allowing self-assembly of adjacent shells, the various arrangements of defects developing in these shells and the possibility of tuning the result by modifying boundary conditions, LC phase, thickness and diameter of the shell or applying external forces make this new LC configuration very attractive.

10.
J Am Chem Soc ; 134(23): 9681-7, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22545731

RESUMO

We report a bent-core liquid crystal (LC) compound exhibiting two fluid smectic phases in which two-dimensional, polar, orthorhombic layers order into three-dimensional ferroelectric states. The lower-temperature phase has a uniform polarization field which responds in an analog fashion to applied electric field. The higher-temperature phase is a new smectic state with periodic undulation of the polarization, structurally modulated layers, and a bistable response to applied electric field which originates in the periodically splay-modulated bulk of the LC rather than by surface stabilization at the cell boundaries.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(5 Pt 1): 051711, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21728560

RESUMO

We analyze the surface electroclinic effect (SECE) in a material that exhibits a first-order bulk smectic-A* (Sm-A*)-smectic-C* (Sm-C*) transition. The effect of a continuously varying degree of enantiomeric excess on the SECE is also investigated. We show that due to the first-order nature of the bulk Sm-A*-Sm-C* transition, the SECE can be unusually strong and that as enantiomeric excess is varied, a jump in surface induced tilt is expected. A theoretical state map, in enantiomeric excess-temperature space, features a critical point which terminates a line of first-order discontinuities in the surface induced tilt. This critical point is analogous to that found for the phase diagram (in electric field-temperature space) for the bulk electroclinic effect. Analysis of the decay of the surface induced tilt, as one moves from surface into bulk, shows that for sufficiently high-surface tilt the decay will exhibit a well-defined spatial kink within which it becomes especially rapid. We also propose that the SECE is additionally enhanced by the de Vries nature (i.e., small layer shrinkage at the bulk Sm-A*-Sm-C* transition) of the material. As such, the SECE provides a new means to characterize the de Vries nature of a material. We discuss the implications for using these materials in device applications and propose ways to investigate the predicted features experimentally.

12.
Phys Rev Lett ; 106(24): 247801, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21770600

RESUMO

We carry out the first study of smectic liquid crystalline colloidal shells and investigate how their complex internal structure depends on the director configuration in the nematic phase, preceding the smectic phase on cooling. Differences in the free energy cost of director bend and splay give an initial skewed distribution of topological defects in the nematic phase. In the smectic phase, the topological and geometrical constraints of the spherical shell imposed on the developing 1D quasi-long-range order create a conflict that triggers a series of buckling instabilities. Two different characteristic defect patterns arise, one driven by the curvature of the shell, the other by the strong nonuniformities in the director field in the vicinity of the topological defects.

13.
Opt Lett ; 31(21): 3158-60, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17041667

RESUMO

Surface-stabilized orthoconic antiferroelectric liquid crystals (OAFLCs) have a director tilt of theta = 45 degrees and are, with no field applied, negatively uniaxial with the optic axis perpendicular to the cell substrates. We demonstrate that OAFLCs can be utilized to achieve lossless phase modulation with three almost equidistant phase levels. This turns out to be true also for polymer-stabilized OAFLCs, where the polymer network increases the switching speed of the device without affecting the phase modulation appreciably.

14.
Opt Lett ; 31(19): 2906-8, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16969418

RESUMO

We have studied the analog (V-shaped switching) mode in ferroelectric liquid crystals in reflective mode for analog phase modulation applications. We have found that several combinations of cell thicknesses and input polarization states exist for which near-lossless analog phase modulation with a range of approximately 2pi rad is obtained, and we demonstrate one such combination experimentally. Despite a slight deviation from the ideal conditions, e.g., the tilt angle was 38 degrees instead of the desired 45 degrees , virtually pure 1.6pi rad phase modulation was obtained; the measured values agree very well with our numerical simulations of the real device.

15.
Appl Opt ; 45(21): 5258-69, 2006 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-16826264

RESUMO

The analog switching mode in ferroelectric liquid crystals, sometimes referred to as 'V-shaped switching,' has, thanks to its submillisecond switching capability, attracted much interest for future fast electro-optic displays where it is to be used for amplitude modulation. We have studied this mode for analog phase-only modulation. As V-shaped switching is based on a conical motion of the index ellipsoid this presents a challenging problem since both the orientation of the slow and fast axes, as well as the amount of birefringence varies in the switching process. We show theoretically, partly by means of Poincaré sphere analysis, that it is in fact possible to obtain near-lossless analog phase modulation between zero and pi radians in an ideal V-shaped switching cell through careful tuning of the polarization state of the input light. Furthermore, we were able to demonstrate this experimentally in a fabricated cell. Although this cell deviated slightly from the ideal conditions, e.g., the tilt cone half-angle was 38 degrees instead of the desired 45 degrees , we still obtained a continuous phase modulation between zero and 0.78pi rad with less than 2% modulation of the amplitude; the measured values agree very well with our numerical simulations of the real device.

16.
Appl Opt ; 43(7): 1559-69, 2004 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15015538

RESUMO

The design, construction, and evaluation of a laser beam steerer that uses two binary ferroelectric liquid-crystal (FLC) spatial light modulators (SLMs) operated in conjunction are presented. The system is characterized by having few components and is in principle lossless. Experimentally, a throughput of approximately 20% was achieved. The simple system design was achieved because of the high tilt angle FLC material used in the SLMs, which were specifically designed and manufactured for this study. By coherently imaging the first SLM onto the second SLM, pixel by pixel, we obtained an effective four-level phase structure with a phase step of 90 degrees. An appropriate alignment procedure is presented. The beam steering performance of the system is reported and analyzed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...