Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Great Lakes Res ; 50: 1-13, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38783923

RESUMO

The North American Great Lakes have been experiencing dramatic change during the past half-century, highlighting the need for holistic, ecosystem-based approaches to management. To assess interest in ecosystem-based management (EBM), including the value of a comprehensive public database that could serve as a repository for the numerous physical, chemical, and biological monitoring Great Lakes datasets that exist, a two-day workshop was organized, which was attended by 40+ Great Lakes researchers, managers, and stakeholders. While we learned during the workshop that EBM is not an explicit mission of many of the participating research, monitoring, and management agencies, most have been conducting research or monitoring activities that can support EBM. These contributions have ranged from single-resource (-sector) management to considering the ecosystem holistically in a decision-making framework. Workshop participants also identified impediments to implementing EBM, including: 1) high anticipated costs; 2) a lack of EBM success stories to garner agency buy-in; and 3) difficulty in establishing common objectives among groups with different mandates (e.g., water quality vs. fisheries production). We discussed as a group solutions to overcome these impediments, including construction of a comprehensive, research-ready database, a prototype of which was presented at the workshop. We collectively felt that such a database would offer a cost-effective means to support EBM approaches by facilitating research that could help identify useful ecosystem indicators and management targets and allow for management strategy evaluations that account for risk and uncertainty when contemplating future decision-making.

2.
PLoS One ; 18(10): e0292988, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37883482

RESUMO

Quantifying the relationship between phytoplankton and zooplankton may offer insight into zooplankton sensitivity to shifting phytoplankton assemblages and the potential impacts of producer-consumer decoupling on the rest of the food web. We analyzed 18 years (2001-2018) of paired phytoplankton and zooplankton samples collected as part of the United States Environmental Protection Agency (U.S. EPA) Great Lakes Biology Monitoring Program to examine both the long-term and seasonal relationships between zooplankton and phytoplankton across all five Laurentian Great Lakes. We also analyzed effects of phytoplankton diversity on zooplankton biomass, diversity, and predator-prey (zooplanktivore/grazer) ratios. Across the Great Lakes, there was a weak positive correlation between total algal biovolume and zooplankton biomass in both spring and summer. The relationship was weaker and not consistently positive within individual lakes. These trends were consistent over time, providing no evidence of increasing decoupling over the study period. Zooplankton biomass was weakly negatively correlated with algal diversity across lakes, whereas zooplankton diversity was unaffected. These relationships did not change when we considered only the edible phytoplankton fraction, possibly due to the high correlation between total and edible phytoplankton biovolume in most of these lakes. Lack of strong coupling between these producer and consumer assemblages may be related to lagging responses by the consumers, top-down effects from higher-level consumers, or other confounding factors. These results underscore the difficulty in predicting higher trophic level responses, including zooplankton, from changes in phytoplankton assemblages.


Assuntos
Fitoplâncton , Zooplâncton , Animais , Fitoplâncton/fisiologia , Zooplâncton/fisiologia , Biomassa , Lagos , Cadeia Alimentar
3.
PLoS One ; 18(4): e0284933, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093876

RESUMO

Gut content analyses have found that round gobies (Neogobius melanostomus) are highly dependent on dreissenid mussels but stable isotope analysis has often suggested that the dreissenid contribution is lower. However, estimation of dietary contributions with stable isotopes relies on accurate discrimination factors (fractionation factors). To test if discrimination values commonly used in aquatic food web studies are suitable for round gobies, we collected round gobies from Oneida Lake, raised them for 63 days under four different diets (Chironomus plumosus, Mytilus chilensis, Dreissenia spp., Euphausia superba) and measured the change in white muscle δ13C and δ15N. Gobies were also collected throughout Oneida Lake for gut content and stable isotope analysis. Diets changed as round gobies grew, with small round gobies (17-42mm) feeding mostly on cladocera and chironomids, intermediate sized gobies (43-94mm) transitioning from chironomid to dreissenid consumption, and larger gobies (95-120mm) predominantly consuming dreissenids, similar to findings in other studies. Discrimination factors were obtained by fitting a commonly used asymptotic regression equation describing changes in fish δ13C and δ15N as a function of time and diet stable isotope ratios. The discrimination factor determined for δ13C (-0.4‰ ± 0.32, SE) was lower than the "standard" value of 0.4‰, while that of δ15N (4.0‰ ± 0.32, SE) was higher than the standard value of 3.4‰. Turnover rates for both δ13C and δ15N were estimated as 0.02 ‰*day-1. The use of experimentally determined discrimination factors rather than "standard" values resulted in model estimates that agree more closely with the observed increasing importance of dreissenids in gut content of larger gobies. Our results suggest that the importance of dreissenid mussels inferred from stable isotope studies may be underestimated when using standard isotopic discrimination values.


Assuntos
Lagos , Perciformes , Animais , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Perciformes/fisiologia , Dieta
4.
Zootaxa ; 5182(2): 183-195, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36095691

RESUMO

Large cyclopoid copepods of the genus Cyclops Mller, 1776 are seldom collected in the Laurentian Great Lakes, with only Cyclops scutifer Sars, 1863 and Cyclops strenuus Fischer, 1851 reported from the region. Rare reports of the species C. strenuus date back to 1972 within the Great Lakes basin. The first specimens reported as C. strenuus were collected from the St. Marys River, and additional specimens have been collected from western Lake Erie since 2013. We examined all available archived materials of C. strenuus from the Great Lakes and determined that specimens from the two localities belong to two separate species, neither of which refer to C. strenuus. Archived specimens collected from the St. Marys River in 1972 and 1995 were reidentified as Cyclops sibiricus Lindberg, 1949, a Holarctic species known from Siberia, Russian Federation, Alaska, USA, and northern regions of Canada. The occurrences of C. sibiricus from the St. Marys River extend the known distribution of the species southward some 1,688 km in the Nearctic region. Cyclops specimens collected from the western basin of Lake Erie in 2013, 2014, and 2019 were identified as the Palearctic species Cyclops divergens Lindberg, 1936 using both conventional taxonomy and genetic barcoding. C. divergens is known from localities across much of Europe and eastward into Central Asia. The occurrences of the species from western Lake Erie constitute the first detection of C. divergens in the Great Lakes and the Nearctic region. Therefore, we expect C. strenuus does not occur in the Great Lakes basin and is likely restricted to the Palearctic region.


Assuntos
Copépodes , Lagos , Animais , Copépodes/genética , Documentação , Monitoramento Ambiental , Rios
5.
J Great Lakes Res ; 48(2): 274-288, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36092777

RESUMO

The Laurentian Great Lakes have experienced multiple anthropogenic changes in the past century, including cultural eutrophication, phosphorus abatement initiatives, and the introduction of invasive species. Lake Ontario, the most downstream lake in the system, is considered to be among the most impaired. The benthos of Lake Ontario has been studied intensively in the last six decades and can provide insights into the impact of environmental changes over time. We used multivariate community analyses to examine temporal changes in community composition over the last 54 years, and to assess the major drivers of long-term changes in benthos. The benthic community of Lake Ontario underwent significant transformations that correspond with three major periods. The first period, termed the pre/early Dreissena period (1964-1990), was characterized by high densities of Diporeia, Sphaeriidae, and Tubificidae. During the next period defined by zebra mussel dominance (the 1990s) the same groups were still prevalent, but at altered densities. In the most recent period (2000s to present), which is characterized by the dominance and proliferation of quagga mussels deeper into the lake, the community has changed dramatically: Diporeia almost completely disappeared, Sphaeriidae have greatly declined, and densities of quagga mussels, Oligochaeta and Chironomidae have increased. The introduction of invasive dreissenids has changed the Lake Ontario benthic community, historically dominated by Diporeia, Oligochaeta and Sphaeriidae, to a community dominated by quagga mussels and Oligochaeta. Dreissenids, especially the quagga mussel, were the major drivers of these changes over the last half century.

6.
J Great Lakes Res ; 48(2): 264-273, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35958892

RESUMO

We examined three decades of changes in dreissenid populations in Lake Ontario and predation by round goby (Neogobius melanostomus). Dreissenids (almost exclusively quagga mussels, Dreissena rostriformis bugensis) peaked in 2003, 13 years after arrival, and then declined at depths <90 m but continued to increase deeper through 2018. Lake-wide density also increased from 2008 to 2018 along with average mussel lengths and lake-wide biomass, which reached an all-time high in 2018 (25.2 ± 3.3 g AFTDW/m2). Round goby densities were estimated at 4.2 fish/m2 using videography at 10 to 35 m depth range in 2018. This density should impact mussel populations based on feeding rates, as indicated in the literature. While the abundance of 0-5 mm mussels appears to be high in all three years with measured length distributions (2008, 2013, 2018), the abundance of 5 to 12 mm dreissenids, the size range most commonly consumed by round goby, was low except at >90 m depths. Although the size distributions indicate that round goby is affecting mussel recruitment, we did not find a decline in dreissenid density in the nearshore and mid-depth ranges where goby have been abundant since 2005. The lake-wide densities and biomass of quagga mussels have increased over time, due to both the growth of individual mussels in the shallower depths, and a continuing increase in density at >90 m. Thus, the ecological effects of quagga mussels in Lake Ontario are likely to continue into the foreseeable future.

7.
J Environ Manage ; 319: 115726, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35849931

RESUMO

Macrophytes are affected by many natural and human stressors globally but their long-term responses to these multiple stressors are not often quantified. We employed remote sensing and statistical tools to analyze datasets from both short-term (2017-2018) field investigations to explore seasonal patterns, and long-term (1988-2018) Landsat remote-sensing images to detect annual patterns of macrophyte distributions and study their responses to changes in climate, hydrology, and anthropogenic activities in a chain of water diversion lakes in eastern China. We found: 1) biomass and species richness of macrophytes peaked in summer with dominant species of submerged macrophytes Ceratophyllum demersum, Potamogeton pectinatus, and Potamogeton maackianus and floating macrophytes Trapa bispinosa, and non-native species Cabomba caroliniana spread in midstream Luoma Lake and Nansi Lake in summer, while Potamogeton crispus was dominant in all the lakes in spring; 2) water physicochemical parameters (chloride and water depth), lake characteristics (area and water storage), climate factors (air temperature and precipitation), and anthropogenic activities (commercial fishery and urban development) were significantly correlated to the seasonal distribution of macrophytes; 3) long-term data showed a significantly negative correlation between coverage of floating macrophytes and precipitation where the wettest year of 2003 had the lowest coverage of floating macrophytes; and 4) climate (air temperature) and hydrology (water level) were positively correlated with total macrophyte coverage, but human disturbance indexed by the gross domestic product was negatively driving long-term coverage of macrophytes. Our study has important implications for understanding the long-term succession of macrophytes under both natural and human stressors, and for future environmental management and ecological restoration of freshwater lakes.


Assuntos
Lagos , Potamogetonaceae , China , Humanos , Hidrologia , Estações do Ano , Água
8.
Ecol Evol ; 12(1): e8486, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127021

RESUMO

Invasion of non-native species might alter food web structure and the strength of top-down control within lake ecosystems. As top-down control exerted by fish populations is often dominated by young of the year fish, the impact of new fish species might depend on the feeding rates of the juvenile fish. Here we provide comparative analyses of feeding rates of juvenile whitefish (Coregonus wartmanni) - a native and specialised planktivore and an invasive generalist (sticklebacks, Gasterosteus aculeatus). We studied feedings rates of whitefish and sticklebacks in aquaria experiments using 2 cm to 8 cm fish feeding on seven zooplankton species common to Lake Constance. As whitefish hatch several months earlier than sticklebacks, 0+ whitefish are larger than 0+ sticklebacks throughout the year and hence are predicted to have higher feeding rates on especially large zooplankton species. We show that sticklebacks as small as 2 cm were able to feed on the largest zooplankton species of Lake Constance. Further, stickleback feeding rates were similar to both the same size 0+ whitefish and the larger 0+ whitefish co-occurring with smaller 0+ sticklebacks. Hence, 0+ sticklebacks will compete with 0+ whitefish for the same zooplankton species, therefore the invasion of sticklebacks is unlikely to change the relative feeding pressure by individual 0+ fish on zooplankton species.

9.
Ecology ; 102(12): e03528, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34469591

RESUMO

Benthic invertebrates are important trophic links in aquatic food webs and serve as useful bioindicators of environmental conditions because their responses integrate the effects of both water and sediment qualities. However, long-term data sets for benthic invertebrate assemblages across broad geographic areas are rare and, even if collected, historic data sets are often not readily accessible. This data set provides densities of benthic macroinvertebrates for all taxa collected during lake-wide surveys in Lake Ontario, a Laurentian Great Lake, from 1964 to 2018. This information resulted from surveys funded by the governments of the United States and Canada to investigate the status and changes of Lake Ontario benthic community. Of the 13 lake-wide benthic surveys conducted in Lake Ontario over the course of 54 yr, we were able to acquire taxonomic data to the species level for 11 of the surveys and data to the group level for the other two surveys. Density data are provided for taxa representing the Annelida, Arthropoda, Mollusca, Cnidaria, Nemertea, and Platyhelminthes phyla. Univariate and multivariate analyses revealed that the compositional structure of Lake Ontario invertebrate assemblages differed markedly by depth and were also significantly altered by the Dreissena spp. invasion in early 1990s. The introduction of invasive dreissenids has changed the community historically dominated by Diporeia, Oligochaeta, and Sphaeriidae, to a community dominated by quagga mussels and Oligochaeta. Considering the rarity of long-term benthic data of high taxonomic resolution in lake ecosystems, this data set could be useful to explore broader aspects of ecological theory, including effects of different environmental factors and invasive species on community organization, functional and phylogenetic diversity, and spatial scale of variation in community structure. The data set could also be useful for studies on individual species including abundance and distribution, species co-occurrence, and how the patterns of dominance and rarity change over space and time. Use of this data set for academic or educational purposes is encouraged as long as the data source is properly cited using the title of this Data Paper, the names of the authors, the year of publication, the journal name, and the article number.


Assuntos
Ecossistema , Lagos , Animais , Invertebrados , Ontário , Filogenia
10.
Glob Chang Biol ; 27(24): 6409-6422, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34465002

RESUMO

Land use and climate change are anticipated to affect phytoplankton of lakes worldwide. The effects will depend on the magnitude of projected land use and climate changes and lake sensitivity to these factors. We used random forests fit with long-term (1971-2016) phytoplankton and cyanobacteria abundance time series, climate observations (1971-2016), and upstream catchment land use (global Clumondo models for the year 2000) data from 14 European and 15 North American lakes basins. We projected future phytoplankton and cyanobacteria abundance in the 29 focal lake basins and 1567 lakes across focal regions based on three land use (sustainability, middle of the road, and regional rivalry) and two climate (RCP 2.6 and 8.5) scenarios to mid-21st century. On average, lakes are expected to have higher phytoplankton and cyanobacteria due to increases in both urban land use and temperature, and decreases in forest habitat. However, the relative importance of land use and climate effects varied substantially among regions and lakes. Accounting for land use and climate changes in a combined way based on extensive data allowed us to identify urbanization as the major driver of phytoplankton development in lakes located in urban areas, and climate as major driver in lakes located in remote areas where past and future land use changes were minimal. For approximately one-third of the studied lakes, both drivers were relatively important. The results of this large scale study suggest the best approaches for mitigating the effects of human activity on lake phytoplankton and cyanobacteria will depend strongly on lake sensitivity to long-term change and the magnitude of projected land use and climate changes at a given location. Our quantitative analyses suggest local management measures should focus on retaining nutrients in urban landscapes to prevent nutrient pollution from exacerbating ongoing changes to lake ecosystems from climate change.


Assuntos
Cianobactérias , Fitoplâncton , Mudança Climática , Ecossistema , Humanos , Lagos
11.
Glob Chang Biol ; 27(19): 4615-4629, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34241940

RESUMO

Winter conditions, such as ice cover and snow accumulation, are changing rapidly at northern latitudes and can have important implications for lake processes. For example, snowmelt in the watershed-a defining feature of lake hydrology because it delivers a large portion of annual nutrient inputs-is becoming earlier. Consequently, earlier and a shorter duration of snowmelt are expected to affect annual phytoplankton biomass. To test this hypothesis, we developed an index of runoff timing based on the date when 50% of cumulative runoff between January 1 and May 31 had occurred. The runoff index was computed using stream discharge for inflows, outflows, or for flows from nearby streams for 41 lakes in Europe and North America. The runoff index was then compared with summer chlorophyll-a (Chl-a) concentration (a proxy for phytoplankton biomass) across 5-53 years for each lake. Earlier runoff generally corresponded to lower summer Chl-a. Furthermore, years with earlier runoff also had lower winter/spring runoff magnitude, more protracted runoff, and earlier ice-out. We examined several lake characteristics that may regulate the strength of the relationship between runoff timing and summer Chl-a concentrations; however, our tested covariates had little effect on the relationship. Date of ice-out was not clearly related to summer Chl-a concentrations. Our results indicate that ongoing changes in winter conditions may have important consequences for summer phytoplankton biomass and production.


Assuntos
Lagos , Fitoplâncton , Clorofila , Clorofila A , Estações do Ano
12.
Sci Total Environ ; 769: 144357, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33477050

RESUMO

Shallow lakes have a tendency to settle into turbid or clear-water states, the latter having lower concentrations of total phosphorus (TP). However, how P-cycling is affected by and perhaps contributes to maintaining the different states is not well understood, in part because quantifying the processes involved by traditional methods is difficult. To elucidate these processes, we conducted experiments using 32P-PO4 as a tracer on samples collected from the unrestored, unvegetated sections of Huizhou West Lake where turbid water prevails as well as the restored, clear-water, macrophyte-rich waters of the lake. We measured PO4 uptake rates, 32P-PO4 accumulation by various plankton size-fractions (picoplankton (0.2-2 µm), nanoplankton (2-20 µm) and microplankton (>20 µm)) as well as release rates of 32P-PO4 by labelled plankton. Our results revealed slow PO4 uptake in the turbid state due to low PO4 concentration, slow recycling of the high particulate P, and high levels of particulate 32P which may allow for continuous high growth and biomass of phytoplankton. In contrast, in the clear water state, the uptake of PO4 was rapid due to a higher PO4 concentration, the recycling rates of particulate 32P were high and the levels of particulate 32P were low, potentially constraining the phytoplankton growth. A greater proportion of particulate 32P was in the microplankton fraction in clear waters, suggesting that grazing by microplankton may play an important role in the rapid P recycling in clear-waters. Our results provide some evidence for a reinforcement of the turbid conditions (low recycling rate) when the lake is in a turbid state and vice versa when in the clear water state. The results add new knowledge to the understanding of P cycling in shallow lakes and illustrate the utility of using P-kinetics in contrasting states in plankton communities.


Assuntos
Lagos , Plâncton , Biomassa , Eutrofização , Fósforo , Fitoplâncton
13.
Limnol Oceanogr ; 65(10): 2460-2484, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33288967

RESUMO

Deep chlorophyll maxima (DCM) are common in stratified lakes and oceans, and phytoplankton growth within DCM often contributes significantly to total system production. Theory suggests that properties of DCM should be predictable by trophic state, with DCM becoming deeper, broader, and less productive with greater oligotrophy. However, rigorous tests of these expectations are lacking in freshwater systems. We use data generated by the U.S. EPA from 1996 to 2017, including in situ profile data for temperature, photosynthetically active radiation (PAR), chlorophyll, beam attenuation (c p), and dissolved oxygen (DO), to investigate patterns in DCM across lakes and over time. We consider trophic state, 1% PAR depth (z 1%), thermal structure, and degree of photoacclimation as potential drivers of DCM characteristics. DCM depth and thickness generally increased while DCM chlorophyll concentration decreased with decreasing trophic state index (greater oligotrophy). The z 1% was a stronger predictor of DCM depth than thermal structure. DCM in meso-oligotrophic waters were closely aligned with maxima in c p and DO saturation, suggesting they are autotrophically productive. However, the depths of these maxima diverged in ultra-oligotrophic waters, with DCM occurring deepest. This is likely a consequence of photoacclimation in high-transparency waters, where c p can be a better proxy for phytoplankton biomass than chlorophyll. Our results are generally consistent with expectations from DCM theory, but they also identify specific gaps in our understanding of DCM in lakes, including the causes of multiple DCM, the importance of nutriclines, and the processes forming DCM at higher light levels than expected.

14.
Freshw Biol ; 65(11): 1997-2009, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33288969

RESUMO

Diel vertical migration (DVM) is common in aquatic organisms. The trade-off between reduced predation risk in deeper, darker waters during the day and increased foraging opportunities closer to the surface at night is a leading hypothesis for DVM behaviour.Diel vertical migration behaviour has dominated research and assessment frameworks for Mysis, an omnivorous mid-trophic level macroinvertebrate that exhibits strong DVM between benthic and pelagic habitats and plays key roles in many deep lake ecosystems. However, some historical literature and more recent evidence indicate that mysids also remain on the bottom at night, counter to expectations of DVM.We surveyed the freshwater Mysis literature using Web of Science (WoS; 1945-2019) to quantify the frequency of studies on demographics, diets, and feeding experiments that considered, assessed, or included Mysis that did not migrate vertically but remained in benthic habitats. We supplemented our WoS survey with literature searches for relevant papers published prior to 1945, journal articles and theses not listed in WoS, and additional references known to the authors but missing from WoS (e.g. only 47% of the papers used to evaluate in situ diets were identified by WoS).Results from the survey suggest that relatively little attention has been paid to the benthic components of Mysis ecology. Moreover, the literature suggests that reliance on Mysis sampling protocols using pelagic gear at night provides an incomplete picture of Mysis populations and their role in ecosystem structure and function.We summarise current knowledge of Mysis DVM and provide an expanded framework that more fully considers the role of benthic habitat. Acknowledging benthic habitat as an integral part of Mysis ecology will enable research to better understand the role of Mysis in food web processes.

15.
PLoS One ; 15(6): e0235387, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32598353

RESUMO

Two invasive mussels (zebra mussel, Dreissena polymorpha and quagga mussel D. rostriformis bugensis) have restructured the benthic habitat of many water bodies in both Europe and North America. Quagga mussels dominate in most lakes where they co-occur even though zebra mussels typically invade lakes first. A reversal to zebra mussel over time has rarely been observed. Laboratory experiments have shown that quagga mussels grow faster than zebra mussels when predator kairomones are present and this faster growth is associated with lower investment in anti-predator response in quagga mussels than zebra mussels. This led to the hypothesis that the dominance of quagga mussels is due to faster growth that is not offset by higher vulnerability to predators when predation rates are low, as may be expected in newly colonized lakes. It follows that in lakes with high predation pressure, the anti-predatory investments of zebra mussels should be more advantageous and zebra mussels should be the more abundant of the two species. In Onondaga Lake, NY, a meso-eutrophic lake with annual mussel surveys from 2005 to 2018, quagga mussels increased from less than 6% of the combined mussel biomass in 2007 to 82% in 2009 (from 3 to 69% by number), rates typical of this displacement process elsewhere, but then declined again to 11-20% of the mussel biomass in 2016-2018. Average total mussel biomass also declined from 344-524 g shell-on dry weight (SODW)/m2 in 2009-2011 to 34-73 g SODW/m2 in 2016-2018, mainly due to fewer quagga mussels. This decline in total mussel biomass and a return to zebra mussel as the most abundant species occurred as the round goby (Neogobius melanostomus) increased in abundance. Both the increase to dominance of quagga mussels and the subsequent decline following the increase in this molluscivorous fish are consistent with the differences in the trade-off between investment in growth and investment in defenses of the two species. We predict that similar changes in dreissenid mussel populations will occur in other lakes following round goby invasions, at least on the habitats colonized by both species.


Assuntos
Dreissena/crescimento & desenvolvimento , Dreissena/imunologia , Ecossistema , Peixes/fisiologia , Espécies Introduzidas , Comportamento Predatório , Animais , Dreissena/classificação , Lagos , New York
16.
Nat Commun ; 11(1): 2526, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433562

RESUMO

Globally, our knowledge on lake fisheries is still limited despite their importance to food security and livelihoods. Here we show that fish catches can respond either positively or negatively to climate and land-use changes, by analyzing time-series data (1970-2014) for 31 lakes across five continents. We find that effects of a climate or land-use driver (e.g., air temperature) on lake environment could be relatively consistent in directions, but consequential changes in a lake-environmental factor (e.g., water temperature) could result in either increases or decreases in fish catch in a given lake. A subsequent correlation analysis indicates that reductions in fish catch was less likely to occur in response to potential climate and land-use changes if a lake is located in a region with greater access to clean water. This finding suggests that adequate investments for water-quality protection and water-use efficiency can provide additional benefits to lake fisheries and food security.


Assuntos
Pesqueiros , Lagos/química , Animais , Mudança Climática , Ecossistema , Peixes/crescimento & desenvolvimento , Humanos , Temperatura , Qualidade da Água
17.
Glob Chang Biol ; 26(5): 2756-2784, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32133744

RESUMO

In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short-term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well-developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short- and long-term. We summarize the current understanding of storm-induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.


Assuntos
Lagos , Fitoplâncton , Mudança Climática , Ecossistema , Rios
18.
Nat Ecol Evol ; 3(9): 1351-1358, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31427731

RESUMO

When traits affecting species interactions evolve rapidly, ecological dynamics can be altered while they occur. These eco-evolutionary dynamics have been documented repeatedly in laboratory and mesocosm experiments. We show here that they are also important for understanding community functioning in a natural ecosystem. Daphnia is a major planktonic consumer influencing seasonal plankton dynamics in many lakes. It is also sensitive to succession in its phytoplankton food, from edible algae in spring to relatively inedible cyanobacteria in summer. We show for Daphnia mendotae in Oneida Lake, New York, United States, that within-year ecological change in phytoplankton (from spring diatoms, cryptophytes and greens to summer cyanobacteria) resulted in consumers evolving increasing tolerance to cyanobacteria over time. This evolution fed back on ecological seasonal changes in population abundance of this major phytoplankton consumer. Oneida Lake is typical of mesotrophic lakes broadly, suggesting that eco-evolutionary consumer-resource dynamics is probably common.


Assuntos
Cianobactérias , Plâncton , Animais , Ecossistema , Lagos , Fitoplâncton
19.
J Great Lakes Res ; 45(1): 196-201, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30739983

RESUMO

The Asian cyclopoid copepod Mesocyclops pehpeiensis Hu, 1943 has been reported as an introduced species at several locations in the western hemisphere. In the United States, reports of this exotic species are restricted to localities in Louisiana, Mississippi, and Washington D.C. This report documents a new record of occurrence for M. pehpeiensis from the western basin of Lake Erie. The detection of M. pehpeiensis in Lake Erie constitutes the first record of this species from the Laurentian Great Lakes, and the northernmost record in the western hemisphere. The species was found in 2016, 2017 and 2018, including females with egg sacks, and can therefore be considered established in the area. The occurrence of M. pehpeiensis in Lake Erie suggests that this Asian copepod may be more widely distributed in North America than is currently understood.

20.
Bioinvasions Rec ; 8(3): 614-622, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33628746

RESUMO

The ctenopod Diaphanosoma fluviatile has been reported primarily from the Neotropical region and occasionally from the southern United States. D. fluviatile was collected in the Great Lakes basin (the Maumee River, Western Lake Erie, and Lake Michigan) in 2015 and 2018, far north from its previously known distribution. The occurrence of this southern species in the Maumee River and Great Lakes may be the result of an anthropogenic introduction, although a natural range expansion cannot be excluded. This report documents the northernmost record of D. fluviatile in the Nearctic region, extending the known distribution of the species to 42°N, which is a notable increase of 11 degrees latitude. Our detection of D. fluviatile is the first record of this southern species from the Laurentian Great Lakes drainage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...