Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BioData Min ; 17(1): 8, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424554

RESUMO

BACKGROUND: Breast cancer is the most common malignancy among women worldwide. Despite advances in treating breast cancer over the past decades, drug resistance and adverse effects remain challenging. Recent therapeutic progress has shifted toward using drug combinations for better treatment efficiency. However, with a growing number of potential small-molecule cancer inhibitors, in silico strategies to predict pharmacological synergy before experimental trials are required to compensate for time and cost restrictions. Many deep learning models have been previously proposed to predict the synergistic effects of drug combinations with high performance. However, these models heavily relied on a large number of drug chemical structural fingerprints as their main features, which made model interpretation a challenge. RESULTS: This study developed a deep neural network model that predicts synergy between small-molecule pairs based on their inhibitory activities against 13 selected key proteins. The synergy prediction model achieved a Pearson correlation coefficient between model predictions and experimental data of 0.63 across five breast cancer cell lines. BT-549 and MCF-7 achieved the highest correlation of 0.67 when considering individual cell lines. Despite achieving a moderate correlation compared to previous deep learning models, our model offers a distinctive advantage in terms of interpretability. Using the inhibitory activities against key protein targets as the main features allowed a straightforward interpretation of the model since the individual features had direct biological meaning. By tracing the synergistic interactions of compounds through their target proteins, we gained insights into the patterns our model recognized as indicative of synergistic effects. CONCLUSIONS: The framework employed in the present study lays the groundwork for future advancements, especially in model interpretation. By combining deep learning techniques and target-specific models, this study shed light on potential patterns of target-protein inhibition profiles that could be exploited in breast cancer treatment.

2.
PLoS One ; 19(2): e0298788, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394152

RESUMO

Breast cancer is one of the most common types of cancer in females. While drug combinations have shown potential in breast cancer treatments, identifying new effective drug pairs is challenging due to the vast number of possible combinations among available compounds. Efforts have been made to accelerate the process with in silico predictions. Here, we developed a Boolean model of signaling pathways in breast cancer. The model was tailored to represent five breast cancer cell lines by integrating information about cell-line specific mutations, gene expression, and drug treatments. The models reproduced cell-line specific protein activities and drug-response behaviors in agreement with experimental data. Next, we proposed a calculation of protein synergy scores (PSSs), determining the effect of drug combinations on individual proteins' activities. The PSSs of selected proteins were used to investigate the synergistic effects of 150 drug combinations across five cancer cell lines. The comparison of the highest single agent (HSA) synergy scores between experiments and model predictions from the MDA-MB-231 cell line achieved the highest Pearson's correlation coefficient of 0.58 with a great balance among the classification metrics (AUC = 0.74, sensitivity = 0.63, and specificity = 0.64). Finally, we clustered drug pairs into groups based on the selected PSSs to gain further insights into the mechanisms underlying the observed synergistic effects of drug pairs. Clustering analysis allowed us to identify distinct patterns in the protein activities that correspond to five different modes of synergy: 1) synergistic activation of FADD and BID (extrinsic apoptosis pathway), 2) synergistic inhibition of BCL2 (intrinsic apoptosis pathway), 3) synergistic inhibition of MTORC1, 4) synergistic inhibition of ESR1, and 5) synergistic inhibition of CYCLIN D. Our approach offers a mechanistic understanding of the efficacy of drug combinations and provides direction for selecting potential drug pairs worthy of further laboratory investigation.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Sinergismo Farmacológico , Transdução de Sinais , Combinação de Medicamentos , Células MCF-7 , Linhagem Celular Tumoral
3.
BioData Min ; 15(1): 8, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313925

RESUMO

This work presents mSRFR (microalgae SMOTE Random Forest Relief model), a classification tool for noncoding RNAs (ncRNAs) in microalgae, including green algae, diatoms, golden algae, and cyanobacteria. First, the SMOTE technique was applied to address the challenge of imbalanced data due to the different numbers of microalgae ncRNAs from different species in the EBI RNA-central database. Then the top 20 significant features from a total of 106 features, including sequence-based, secondary structure, base-pair, and triplet sequence-structure features, were selected using the Relief feature selection method. Next, ten-fold cross-validation was applied to choose a classifier algorithm with the highest performance among Support Vector Machine, Random Forest, Decision Tree, Naïve Bayes, K-nearest Neighbor, and Neural Network, based on the receiver operating characteristic (ROC) area. The results showed that the Random Forest classifier achieved the highest ROC area of 0.992. Then, the Random Forest algorithm was selected and compared with other tools, including RNAcon, CPC, CPC2, CNCI, and CPPred. Our model achieved a high accuracy of about 97% and a low false-positive rate of about 2% in predicting the test dataset of microalgae. Furthermore, the top features from Relief revealed that the %GA dinucleotide is a signature feature of microalgal ncRNAs when compared to Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, and Homo sapiens.

4.
Biology (Basel) ; 11(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35053069

RESUMO

Cordyceps militaris is an edible fungus that produces many beneficial compounds, including cordycepin and carotenoid. In many fungi, growth, development and secondary metabolite production are controlled by crosstalk between light-signaling pathways and other regulatory cascades. However, little is known about the gene regulation upon light exposure in C. militaris. This study aims to construct a gene regulatory network (GRN) that responds to light in C. militaris. First, a genome-scale GRN was built based on transcription factor (TF)-target gene interactions predicted from the Regulatory Sequence Analysis Tools (RSAT). Then, a light-responsive GRN was extracted by integrating the transcriptomic data onto the genome-scale GRN. The light-responsive network contains 2689 genes and 6837 interactions. From the network, five TFs, Snf21 (CCM_04586), an AT-hook DNA-binding motif TF (CCM_08536), a homeobox TF (CCM_07504), a forkhead box protein L2 (CCM_02646) and a heat shock factor Hsf1 (CCM_05142), were identified as key regulators that co-regulate a large group of growth and developmental genes. The identified regulatory network and expression profiles from our analysis suggested how light may induce the growth and development of C. militaris into a sexual cycle. The light-mediated regulation also couples fungal development with cordycepin and carotenoid production. This study leads to an enhanced understanding of the light-responsive regulation of growth, development and secondary metabolite production in the fungi.

5.
Sci Rep ; 11(1): 20383, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650130

RESUMO

SARS-CoV-2 continues to infect an ever-expanding number of people, resulting in an increase in the number of deaths globally. With the emergence of new variants, there is a corresponding decrease in the currently available vaccine efficacy, highlighting the need for greater insights into the viral epitope profile for both vaccine design and assessment. In this study, three immunodominant linear B cell epitopes in the SARS-CoV-2 spike receptor-binding domain (RBD) were identified by immunoinformatics prediction, and confirmed by ELISA with sera from Macaca fascicularis vaccinated with a SARS-CoV-2 RBD subunit vaccine. Further immunoinformatics analyses of these three epitopes gave rise to a method of linear B cell epitope prediction and selection. B cell epitopes in the spike (S), membrane (M), and envelope (E) proteins were subsequently predicted and confirmed using convalescent sera from COVID-19 infected patients. Immunodominant epitopes were identified in three regions of the S2 domain, one region at the S1/S2 cleavage site and one region at the C-terminus of the M protein. Epitope mapping revealed that most of the amino acid changes found in variants of concern are located within B cell epitopes in the NTD, RBD, and S1/S2 cleavage site. This work provides insights into B cell epitopes of SARS-CoV-2 as well as immunoinformatics methods for B cell epitope prediction, which will improve and enhance SARS-CoV-2 vaccine development against emergent variants.


Assuntos
COVID-19/imunologia , Epitopos de Linfócito B/imunologia , Epitopos Imunodominantes/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Proteínas da Matriz Viral/imunologia , Animais , COVID-19/prevenção & controle , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Biologia Computacional , Proteínas do Envelope de Coronavírus/química , Proteínas do Envelope de Coronavírus/imunologia , Epitopos de Linfócito B/química , Humanos , Imunoensaio , Epitopos Imunodominantes/química , Macaca , Modelos Moleculares , Glicoproteína da Espícula de Coronavírus/química , Proteínas da Matriz Viral/química
6.
PLoS One ; 16(3): e0248682, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33730083

RESUMO

A new web server called PhotoModPlus is presented as a platform for predicting photosynthetic proteins via genome neighborhood networks (GNN) and genome neighborhood-based machine learning. GNN enables users to visualize the overview of the conserved neighboring genes from multiple photosynthetic prokaryotic genomes and provides functional guidance on the query input. In the platform, we also present a new machine learning model utilizing genome neighborhood features for predicting photosynthesis-specific functions based on 24 prokaryotic photosynthesis-related GO terms, namely PhotoModGO. The new model performed better than the sequence-based approaches with an F1 measure of 0.872, based on nested five-fold cross-validation. Finally, we demonstrated the applications of the webserver and the new model in the identification of novel photosynthetic proteins. The server is user-friendly, compatible with all devices, and available at bicep.kmutt.ac.th/photomod.


Assuntos
Cianobactérias/genética , Aprendizado de Máquina , Fotossíntese/genética , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Software , Biologia Computacional/métodos , Cianobactérias/metabolismo , Conjuntos de Dados como Assunto , Genoma , Internet , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo
7.
Front Immunol ; 12: 785293, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126354

RESUMO

Porcine epidemic diarrhea virus (PEDV) is the causative agent of PED, an enteric disease that causes high mortality rates in piglets. PEDV is an alphacoronavirus that has high genetic diversity. Insights into neutralizing B-cell epitopes of all genetically diverse PEDV strains are of importance, particularly for designing a vaccine that can provide broad protection against PEDV. In this work, we aimed to explore the landscape of linear B-cell epitopes on the spike (S) and membrane (M) proteins of global PEDV strains. All amino acid sequences of the PEDV S and M proteins were retrieved from the NCBI database and grouped. Immunoinformatics-based methods were next developed and used to identify putative linear B-cell epitopes from 14 and 5 consensus sequences generated from distinct groups of the S and M proteins, respectively. ELISA testing predicted peptides with PEDV-positive sera revealed nine novel immunodominant epitopes on the S protein. Importantly, seven of these novel immunodominant epitopes and other subdominant epitopes were demonstrated to be neutralizing epitopes by neutralization-inhibition assay. Our findings unveil important roles of the PEDV S2 subunit in both immune stimulation and virus neutralization. Additionally, our study shows the first time that the M protein is also the target of PEDV neutralization with seven neutralizing epitopes identified. Conservancy profiles of the epitopes are also provided. In this study, we offer immunoinformatics-based methods for linear B-cell epitope identification and a more complete profile of linear B-cell epitopes across the PEDV S and M proteins, which may contribute to the development of a greater next-generation PEDV vaccine as well as peptide-based immunoassays.


Assuntos
Proteínas M de Coronavírus/imunologia , Epitopos de Linfócito B/imunologia , Epitopos Imunodominantes/imunologia , Vírus da Diarreia Epidêmica Suína/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Infecções por Coronavirus/imunologia , Suínos
8.
Sci Rep ; 10(1): 7108, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32346070

RESUMO

Identification of novel photosynthetic proteins is important for understanding and improving photosynthetic efficiency. Synergistically, genome neighborhood can provide additional useful information to identify photosynthetic proteins. We, therefore, expected that applying a computational approach, particularly machine learning (ML) with the genome neighborhood-based feature should facilitate the photosynthetic function assignment. Our results revealed a functional relationship between photosynthetic genes and their conserved neighboring genes observed by 'Phylo score', indicating their functions could be inferred from the genome neighborhood profile. Therefore, we created a new method for extracting patterns based on the genome neighborhood network (GNN) and applied them for the photosynthetic protein classification using ML algorithms. Random forest (RF) classifier using genome neighborhood-based features achieved the highest accuracy up to 87% in the classification of photosynthetic proteins and also showed better performance (Mathew's correlation coefficient = 0.718) than other available tools including the sequence similarity search (0.447) and ML-based method (0.361). Furthermore, we demonstrated the ability of our model to identify novel photosynthetic proteins compared to the other methods. Our classifier is available at http://bicep2.kmutt.ac.th/photomod_standalone, https://bit.ly/2S0I2Ox and DockerHub: https://hub.docker.com/r/asangphukieo/photomod.


Assuntos
Bactérias/genética , Proteínas de Bactérias/genética , Genoma Bacteriano , Modelos Genéticos , Fotossíntese/genética , Máquina de Vetores de Suporte
9.
Peptides ; 118: 170107, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31229668

RESUMO

Bioactive peptides from natural sources are utilized as food supplements for disease prevention and are increasingly becoming targets for drug discovery due to their specificity, efficacy and the absence of undesirable side effects, among others. Hence, the 'SpirPep' platform was developed to facilitate the in silico-based bioactive peptide discovery of these highly sought-after biomolecules from Spirulina(Arthrospira platensis) and to select the protease (thermolysin) used for in vitro digestion. Analysis of the predicted and experimentally-derived peptides suggested that they were mainly involved in ACE inhibition; thus, an ACEi assay was used to study the ACE inhibitory activity of five candidate peptides (SpirPep1-5), chosen from common peptides with multifunctional bioactivity and 100% bioactive peptide coverage, originating from phycobiliproteins. Results showed that SpirPep1 inhibited the activity of ACE with IC50 of 1.748 mM and was non-toxic to fibroblasts of African green monkey kidney and human dermal skin. The molecular docking and MD simulation analysis revealed SpirPep1 had significantly lower binding scores than others and showed greater specificity to ACE. The non-bonded interaction energy of SpirPep1 and ACE was -883 kJ/mol. The SpirPep1 indirectly bound to ACE via the ACE substrate binding sites residues (D121, E123, S516, and S517) found in natural ACE inhibitory peptides (angiotensin II and bradykinin potentiating peptides). In addition, two unreported substrate binding sites including R124 and S219 were found. These results indicate that 'SpirPep' platform could increase the success rate for natural bioactive peptide discovery.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Peptídeos/química , Spirulina/química , Sequência de Aminoácidos , Sítios de Ligação , Simulação de Acoplamento Molecular
10.
BMC Bioinformatics ; 19(1): 149, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29678128

RESUMO

BACKGROUND: Bioactive peptides, including biological sources-derived peptides with different biological activities, are protein fragments that influence the functions or conditions of organisms, in particular humans and animals. Conventional methods of identifying bioactive peptides are time-consuming and costly. To quicken the processes, several bioinformatics tools are recently used to facilitate screening of the potential peptides prior their activity assessment in vitro and/or in vivo. In this study, we developed an efficient computational method, SpirPep, which offers many advantages over the currently available tools. RESULTS: The SpirPep web application tool is a one-stop analysis and visualization facility to assist bioactive peptide discovery. The tool is equipped with 15 customized enzymes and 1-3 miscleavage options, which allows in silico digestion of protein sequences encoded by protein-coding genes from single, multiple, or genome-wide scaling, and then directly classifies the peptides by bioactivity using an in-house database that contains bioactive peptides collected from 13 public databases. With this tool, the resulting peptides are categorized by each selected enzyme, and shown in a tabular format where the peptide sequences can be tracked back to their original proteins. The developed tool and webpages are coded in PHP and HTML with CSS/JavaScript. Moreover, the tool allows protein-peptide alignment visualization by Generic Genome Browser (GBrowse) to display the region and details of the proteins and peptides within each parameter, while considering digestion design for the desirable bioactivity. SpirPep is efficient; it takes less than 20 min to digest 3000 proteins (751,860 amino acids) with 15 enzymes and three miscleavages for each enzyme, and only a few seconds for single enzyme digestion. Obviously, the tool identified more bioactive peptides than that of the benchmarked tool; an example of validated pentapeptide (FLPIL) from LC-MS/MS was demonstrated. The web and database server are available at http://spirpepapp.sbi.kmutt.ac.th . CONCLUSION: SpirPep, a web-based bioactive peptide discovery application, is an in silico-based tool with an overview of the results. The platform is a one-stop analysis and visualization facility; and offers advantages over the currently available tools. This tool may be useful for further bioactivity analysis and the quantitative discovery of desirable peptides.


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Bases de Dados de Proteínas , Genoma , Peptídeos/análise , Software , Sequência de Aminoácidos , Animais , Humanos , Fluxo de Trabalho
11.
Sci Rep ; 7(1): 3638, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28620219

RESUMO

The membrane disruption activities of kalata B1 (kB1) were investigated using molecular dynamics simulations with membrane models. The models were constructed to mimic the lipid microdomain formation in membranes of HIV particle, HIV-infected cell, and host cell. The differences in the lipid ratios of these membranes caused the formation of liquid ordered (lo) domains of different sizes, which affected the binding and activity of kB1. Stronger kB1 disruptive activity was observed for the membrane with small sized lo domain. Our results show that kB1 causes membrane leaking without bilayer penetration. The membrane poration mechanism involved in the disorganization of the lo domain and in cholesterol inter-leaflet translocation is described. This study enhances our understanding of the membrane activity of kB1, which may be useful for designing novel and potentially therapeutic peptides based on the kB1 framework.


Assuntos
Membrana Celular/química , Ciclotídeos/química , Simulação de Dinâmica Molecular , Membrana Celular/metabolismo , Ciclotídeos/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Interações Hospedeiro-Patógeno , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
12.
PLoS One ; 10(11): e0139562, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26517259

RESUMO

Cyclotides are a family of triple disulfide cyclic peptides with exceptional resistance to thermal/chemical denaturation and enzymatic degradation. Several cyclotides have been shown to possess anti-HIV activity, including kalata B1 (KB1). However, the use of cyclotides as anti-HIV therapies remains limited due to the high toxicity in normal cells. Therefore, grafting anti-HIV epitopes onto a cyclotide might be a promising approach for reducing toxicity and simultaneously improving anti-HIV activity. Viral envelope glycoprotein gp120 is required for entry of HIV into CD4+ T cells. However, due to a high degree of variability and physical shielding, the design of drugs targeting gp120 remains challenging. We created a computational protocol in which molecular modeling techniques were combined with a genetic algorithm (GA) to automate the design of new cyclotides with improved binding to HIV gp120. We found that the group of modified cyclotides has better binding scores (23.1%) compared to the KB1. By using molecular dynamic (MD) simulation as a post filter for the final candidates, we identified two novel cyclotides, GA763 and GA190, which exhibited better interaction energies (36.6% and 22.8%, respectively) when binding to gp120 compared to KB1. This computational design represents an alternative tool for modifying peptides, including cyclotides and other stable peptides, as therapeutic agents before the synthesis process.


Assuntos
Fármacos Anti-HIV/química , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , HIV/metabolismo , Peptídeos Cíclicos/química , Algoritmos , Sequência de Aminoácidos , Fármacos Anti-HIV/metabolismo , Sítios de Ligação , Ciclotídeos/química , Ciclotídeos/metabolismo , Dissulfetos , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Peptídeos Cíclicos/metabolismo , Estrutura Terciária de Proteína
13.
PLoS One ; 9(12): e114473, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25473840

RESUMO

Kalata B1 (kB1), a cyclotide that has been used in medical applications, displays cytotoxicity related to membrane binding and oligomerization. Our molecular dynamics simulation results demonstrate that Trp19 in loop 5 of both monomeric and tetrameric kB1 is a key residue for initial anchoring in the membrane binding process. This residue also facilitates the formation of kB1 tetramers. Additionally, we elucidate that kB1 preferentially binds to the membrane interfacial zone and is unable to penetrate into the membrane. In particular, significant roles of amino acid residues in loop 5 and loop 6 on the localization of kB1 to this membrane-water interface zone are found. This study reveals the roles of amino acid residues in the bioactivity of kB1, which is information that can be useful for designing new therapeutic cyclotides with less toxicity.


Assuntos
Membrana Celular/química , Ciclotídeos/química , Proteínas de Plantas/química , Simulação de Dinâmica Molecular , Oldenlandia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína
14.
Nucleic Acids Res ; 42(11): e93, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24771344

RESUMO

To identify non-coding RNA (ncRNA) signals within genomic regions, a classification tool was developed based on a hybrid random forest (RF) with a logistic regression model to efficiently discriminate short ncRNA sequences as well as long complex ncRNA sequences. This RF-based classifier was trained on a well-balanced dataset with a discriminative set of features and achieved an accuracy, sensitivity and specificity of 92.11%, 90.7% and 93.5%, respectively. The selected feature set includes a new proposed feature, SCORE. This feature is generated based on a logistic regression function that combines five significant features-structure, sequence, modularity, structural robustness and coding potential-to enable improved characterization of long ncRNA (lncRNA) elements. The use of SCORE improved the performance of the RF-based classifier in the identification of Rfam lncRNA families. A genome-wide ncRNA classification framework was applied to a wide variety of organisms, with an emphasis on those of economic, social, public health, environmental and agricultural significance, such as various bacteria genomes, the Arthrospira (Spirulina) genome, and rice and human genomic regions. Our framework was able to identify known ncRNAs with sensitivities of greater than 90% and 77.7% for prokaryotic and eukaryotic sequences, respectively. Our classifier is available at http://ncrna-pred.com/HLRF.htm.


Assuntos
Algoritmos , RNA Longo não Codificante/genética , Pequeno RNA não Traduzido/genética , Classificação/métodos , Genoma Bacteriano , Genômica , Humanos , Modelos Logísticos , RNA não Traduzido/classificação , RNA não Traduzido/genética
15.
Sci Rep ; 4: 3933, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24492660

RESUMO

Kalata B1 has been demonstrated to have bioactivity relating to membrane disruption. In this study, we conducted coarse-grained molecular dynamics simulations to gain further insight into kB1 bioactivity. The simulations were performed at various concentrations of kB1 to capture the overall progression of its activity. Two configurations of kB1 oligomers, termed tower-like and wall-like clusters, were detected. The conjugation between the wall-like oligomers resulted in the formation of a ring-like hollow in the kB1 cluster on the membrane surface. Our results indicated that the molecules of kB1 were trapped at the membrane-water interface. The interfacial membrane binding of kB1 induced a positive membrane curvature, and the lipids were eventually extracted from the membrane through the kB1 ring-like hollow into the space inside the kB1 cluster. These findings provide an alternative view of the mechanism of kB1 bioactivity that corresponds with the concept of an interfacial bioactivity model.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/fisiologia , Ciclotídeos/farmacologia , Simulação de Dinâmica Molecular , Membrana Celular/efeitos dos fármacos , Bicamadas Lipídicas/química , Proteínas de Plantas/farmacologia , Ligação Proteica , Água/química
16.
Nucleic Acids Res ; 41(1): e21, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23012261

RESUMO

An ensemble classifier approach for microRNA precursor (pre-miRNA) classification was proposed based upon combining a set of heterogeneous algorithms including support vector machine (SVM), k-nearest neighbors (kNN) and random forest (RF), then aggregating their prediction through a voting system. Additionally, the proposed algorithm, the classification performance was also improved using discriminative features, self-containment and its derivatives, which have shown unique structural robustness characteristics of pre-miRNAs. These are applicable across different species. By applying preprocessing methods--both a correlation-based feature selection (CFS) with genetic algorithm (GA) search method and a modified-Synthetic Minority Oversampling Technique (SMOTE) bagging rebalancing method--improvement in the performance of this ensemble was observed. The overall prediction accuracies obtained via 10 runs of 5-fold cross validation (CV) was 96.54%, with sensitivity of 94.8% and specificity of 98.3%-this is better in trade-off sensitivity and specificity values than those of other state-of-the-art methods. The ensemble model was applied to animal, plant and virus pre-miRNA and achieved high accuracy, >93%. Exploiting the discriminative set of selected features also suggests that pre-miRNAs possess high intrinsic structural robustness as compared with other stem loops. Our heterogeneous ensemble method gave a relatively more reliable prediction than those using single classifiers. Our program is available at http://ncrna-pred.com/premiRNA.html.


Assuntos
Algoritmos , MicroRNAs/classificação , Precursores de RNA/classificação , Pareamento de Bases , Humanos , MicroRNAs/química , Precursores de RNA/química , RNA de Plantas/química , RNA de Plantas/classificação , RNA Viral/química , RNA Viral/classificação , Sensibilidade e Especificidade
17.
Stand Genomic Sci ; 6(1): 43-53, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22675597

RESUMO

Arthrospira platensis is a cyanobacterium that is extensively cultivated outdoors on a large commercial scale for consumption as a food for humans and animals. It can be grown in monoculture under highly alkaline conditions, making it attractive for industrial production. Here we describe the complete genome sequence of A. platensis C1 strain and its annotation. The A. platensis C1 genome contains 6,089,210 bp including 6,108 protein-coding genes and 45 RNA genes, and no plasmids. The genome information has been used for further comparative analysis, particularly of metabolic pathways, photosynthetic efficiency and barriers to gene transfer.

18.
Mol Biol Rep ; 32(4): 215-26, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16328883

RESUMO

Spirulina-acyl-lipid desaturases are membrane-bound enzymes found in thylakoid and plasma membranes. These enzymes carry out the fatty acid desaturation process of Spirulina to yield gamma-linolenic acid (GLA) as the final desaturation product. In this study, Spirulina-Delta(6) desaturase encoded by the desD gene was heterologously expressed and characterized in Saccharomyces cerevisiae. We then conducted site-directed mutagenesis of the histidine residues in the three histidine boxes to determine the role of these amino acid residues in the enzyme function. Our results showed that while four mutants showed complete loss of Delta(6)-desaturase activity and two mutants showed only trace of the activity, the enzyme activity could be partially restored by chemical rescue using exogenously provided imidazole. This study reveals that the histidine residues (which have imidazole as their functional group) in the conserved clusters play a critical role in Delta(6)-desaturase activity, possibly by providing a di-iron catalytic center. In our previous study, this enzyme was expressed in Escherichia coli. The results reveal that the enzyme can function only in the presence of an exogenous cofactor, ferredoxin, provided in vitro. This evidence suggests that baker's yeast has a cofactor that can complement ferredoxin, thought to act as an electron donor for the Delta(6) desaturation in cyanobacteria, including Spirulina. The electron donor of the Spirulina-Delta(6) desaturation in yeast is more likely to be cytochrome b(5), which is absent in E. coli. This means that the enzyme expressed in S. cerevisiae can catalyze the biosynthesis of the product, GLA, in vivo.


Assuntos
Cianobactérias/genética , Linoleoil-CoA Desaturase/genética , Linoleoil-CoA Desaturase/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Primers do DNA , Ácidos Graxos/metabolismo , Ferredoxinas , Cromatografia Gasosa-Espectrometria de Massas , Histidina/genética , Histidina/metabolismo , Imidazóis/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Alinhamento de Sequência
19.
J Plant Physiol ; 162(10): 1123-32, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16255170

RESUMO

Characterization of the photosynthetic electron transport in a mutant of Spirulina platensis, generated by chemical mutagenesis, demonstrated that the electron transfer from the plastoquinone (PQ) to cytochrome b6/f was slowed. Thermoluminescence (TL) measurements suggested the presence of reversed energy flow via PQ, which resulted in an emergence of the plant-like after-glow TL band at 45 degrees C that could be enhanced by the transthylakoidal pH gradient and could be eliminated by an uncoupler, FCCP. The localization of the changes in the electron transport of the mutant cells measured by various methods revealed that the re-oxidation of the PQ pool is hampered in the mutant compared to the wild-type cells. The reduction in energy migration was localized between PQ and PS I reaction centers.


Assuntos
Cianobactérias/genética , Complexo Citocromos b6f/metabolismo , Plastoquinona/metabolismo , Cianobactérias/enzimologia , Fluorescência , Medições Luminescentes , Oxirredução , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...