Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 11(22): 5797-5807, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34094082

RESUMO

We report the excited-state behavior of a structurally simple bis-sulfoxide complex, cis-S,S-[Ru(bpy)2(dmso)2]2+, as investigated by femtosecond pump-probe spectroscopy. The results reveal that a single photon prompts phototriggered isomerization of one or both dmso ligands to yield a mixture of cis-S,O-[Ru(bpy)2(dmso)2]2+ and cis-O,O-[Ru(bpy)2(dmso)2]2+. The quantum yields of isomerization of each product and relative product distribution are dependent upon the excitation wavelength, with longer wavelengths favoring the double isomerization product, cis-O,O-[Ru(bpy)2(dmso)2]2+. Transient absorption measurements on cis-O,O-[Ru(bpy)2(dmso)2]2+ do not reveal an excited-state isomerization pathway to produce either the S,O or S,S isomers. Femtosecond pulse shaping experiments reveal no change in the product distribution. Pump-repump-probe transient absorption spectroscopy of cis-S,S-[Ru(bpy)2(dmso)2]2+ shows that a pump-repump time delay of 3 ps dramatically alters the S,O : O,O product ratio; pump-repump-probe transient absorption spectroscopy of cis-O,O-[Ru(bpy)2(dmso)2]2+ with a time delay of 3 ps uncovers an excited-state isomerization pathway to produce the S,O isomer. In conjunction with low-temperature steady-state emission spectroscopy, these results are interpreted in the context of an excited-state bifurcating pathway, in which the isomerization product distribution is determined not by thermodynamics, but rather as a dynamics driven reaction.

2.
Angew Chem Int Ed Engl ; 54(39): 11368-86, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26382095

RESUMO

Coherent multidimensional electronic spectroscopy can be employed to unravel various channels in molecular chemical reactions. This approach is thus not limited to analysis of energy transfer or charge transfer (i.e. processes from photophysics), but can also be employed in situations where the investigated system undergoes permanent structural changes (i.e. in photochemistry). Photochemical model reactions are discussed by using the example of merocyanine/spiropyran-based molecular switches, which show a rich variety of reaction channels, in particular ring opening and ring closing, cis-trans isomerization, coherent vibrational wave-packet motion, radical ion formation, and population relaxation. Using pump-probe, pump-repump-probe, coherent two-dimensional and three-dimensional, triggered-exchange 2D, and quantum-control spectroscopy, we gain intuitive pictures on which product emerges from which reactant and which reactive molecular modes are associated.

3.
J Phys Chem A ; 118(48): 11364-72, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25412434

RESUMO

Excitation with shaped femtosecond laser pulses is a logical extension of coherent two-dimensional (2D) spectroscopy. Here we combine quantum control and information from 2D spectroscopy to analyze the initial steps in three competing reaction pathways of an isomerizing merocyanine dye. Besides the achievement of control objectives, we show how excitation with tailored pulses can be used to retrieve photochemical information that is inaccessible or experimentally demanding to obtain with other approaches.

4.
J Chem Phys ; 140(22): 224310, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24929391

RESUMO

Upon ultraviolet excitation, photochromic spiropyran compounds can be converted by a ring-opening reaction into merocyanine molecules, which in turn can form several isomers differing by cis and trans configurations in the methine bridge. Whereas the spiropyran-merocyanine conversion reaction of the nitro-substituted indolinobenzopyran 6-nitro-1',3',3'-trimethylspiro[2H-1-benzopyran-2,2'-indoline] (6-nitro BIPS) has been studied extensively in theory and experiments, little is known about photoisomerization among the merocyanine isomers. In this article, we employ femtosecond transient absorption spectroscopy with variable excitation wavelengths to investigate the excited-state dynamics of the merocyanine in acetonitrile at room temperature, where exclusively the trans-trans-cis (TTC) and trans-trans-trans (TTT) isomers contribute. No photochemical ring-closure pathways exist for the two isomers. Instead, we found that (18±4)% of excited TTC isomers undergo an ultrafast excited-state cis→trans photoisomerization to TTT within 200 fs, while the excited-state lifetime of TTC molecules that do not isomerize is 35 ps. No photoisomerization was detected for the TTT isomer, which relaxes to the ground state with a lifetime of roughly 160 ps. Moreover, signal oscillations at 170 cm(-1) and 360 cm(-1) were observed, which can be ascribed to excited-state wave-packet dynamics occurring in the course of the TTC→TTT isomerization. The results of high-level time-dependent density functional theory in conjunction with polarizable continuum models are presented in the subsequent article [C. Walter, S. Ruetzel, M. Diekmann, P. Nuernberger, T. Brixner, and B. Engels, J. Chem. Phys. 140, 224311 (2014)].


Assuntos
Benzopiranos/química , Indóis/química , Isomerismo , Solventes/química , Luz , Método de Monte Carlo , Nitrocompostos/química , Pulso Arterial , Teoria Quântica
5.
J Chem Phys ; 140(22): 224311, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24929392

RESUMO

The photochemical isomerization of the trans-trans-cis to the trans-trans-trans isomer of the merocyanine form of 6-nitro BIPS, which has been studied with femtosecond transient absorption spectroscopy [S. Ruetzel, M. Diekmann, P. Nuernberger, C. Walter, B. Engels, and T. Brixner, J. Chem. Phys. 140, 224310 (2014)], is investigated using time-dependent density functional theory in conjunction with polarizable continuum models. Benchmark calculations against SCS-ADC(2) evaluate the applicability of the CAM-B3LYP functional. Apart from a relaxed scan in the ground state with additional computation of the corresponding excitation energies, which produces the excited-state surface vertical to the ground-state isomerization coordinate, a relaxed scan in the S1 gives insight into the geometric changes orthogonal to the reaction coordinate and the fluorescence conditions. The shape of the potential energy surface (PES) along the reaction coordinate is found to be highly sensitive to solvation effects, with the method of solvation (linear response vs. state-specific) being critical. The shape of the PES as well as the computed harmonic frequencies in the S1 minima are in line with the experimental results and offer a straightforward interpretation.

6.
Proc Natl Acad Sci U S A ; 111(13): 4764-9, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24639540

RESUMO

Coherent multidimensional electronic spectroscopy is commonly used to investigate photophysical phenomena such as light harvesting in photosynthesis in which the system returns back to its ground state after energy transfer. By contrast, we introduce multidimensional spectroscopy to study ultrafast photochemical processes in which the investigated molecule changes permanently. Exemplarily, the emergence in 2D and 3D spectra of a cross-peak between reactant and product reveals the cis-trans photoisomerization of merocyanine isomers. These compounds have applications in organic photovoltaics and optical data storage. Cross-peak oscillations originate from a vibrational wave packet in the electronically excited state of the photoproduct. This concept isolates the isomerization dynamics along different vibrational coordinates assigned by quantum-chemical calculations, and is applicable to determine chemical dynamics in complex photoreactive networks.

7.
Phys Rev Lett ; 110(14): 148305, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25167047

RESUMO

We establish coherent triggered-exchange two-dimensional (TE2D) electronic spectroscopy as an expansion of pump-repump-probe transient absorption spectroscopy and uniquely elucidate the role of higher-lying electronic states in ultrafast photochemistry. As an example, this is demonstrated for a molecular switch present in two ring-open conformations. The formation of a new species-the radical cation-is observed and its precursor state is identified via TE2D.

8.
J Am Chem Soc ; 133(33): 13074-80, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21809866

RESUMO

Coherent two-dimensional electronic spectroscopy is usually employed on molecular species with fixed geometric configuration. Here we present two-dimensional Fourier-transform electronic spectra of dissolved 6,8-dinitro-1',3',3'-trimethylspiro[2H-1-benzopyran-2,2'-indoline] (6,8-dinitro-BIPS), a photochromic system present in two ring-open forms differing in the cis/trans configuration of a double bond, which both undergo a photoinduced ring closure. The two-dimensional spectra, recorded with 20 fs pump pulses centered at 605 nm and a supercontinuum probe covering the complete visible spectral range, allow for a detailed analysis of the photophysics and photochemistry of the two isomers and directly reveal that cis/trans isomerization among them does not play a major role. This experiment demonstrates the potential of two-dimensional electronic spectroscopy for reactive processes.

9.
Phys Chem Chem Phys ; 13(19): 8627-36, 2011 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-21412517

RESUMO

Recently we introduced the von Neumann representation as a joint time-frequency description for femtosecond laser pulses. Here we show that the von Neumann basis can be implemented into an evolutionary algorithm for adaptive optimization in coherent control. We perform simulations that demonstrate the efficiency compared to other parametrizations in the frequency domain. We also illustrate pulse-shape simplification by basis-function reduction. Essential structures using the von Neumann basis are retained without losing control performance significantly. In an optical demonstration experiment we show the practicality by producing double pulses with a given time separation. Adaptive control in time-frequency space will be especially valuable for quantum systems requiring specific transition frequencies at definite times.

10.
J Chem Phys ; 133(16): 164510, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21033808

RESUMO

Recently we introduced the von Neumann representation as a joint time-frequency description for femtosecond laser pulses and suggested its use as a basis for pulse shaping experiments. Here we use the von Neumann basis to represent multidimensional molecular control landscapes, providing insight into the molecular dynamics. We present three kinds of time-frequency phase space scanning procedures based on the von Neumann formalism: variation of intensity, time-frequency phase space position, and/or the relative phase of single subpulses. The shaped pulses produced are characterized via Fourier-transform spectral interferometry. Quantum control is demonstrated on the laser dye IR140 elucidating a time-frequency pump-dump mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...