Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2403873, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881289

RESUMO

Mott metal-insulator transitions possess electronic, magnetic, and structural degrees of freedom promising next-generation energy-efficient electronics. A previously unknown, hierarchically ordered, and anisotropic supercrystal state is reported and its intrinsic formation characterized in-situ during a Mott transition in a Ca2RuO4 thin film. Machine learning-assisted X-ray nanodiffraction together with cryogenic electron microscopy reveal multi-scale periodic domain formation at and below the film transition temperature (TFilm ≈ 200-250 K) and a separate anisotropic spatial structure at and above TFilm. Local resistivity measurements imply an intrinsic coupling of the supercrystal orientation to the material's anisotropic conductivity. These findings add a new degree of complexity to the physical understanding of Mott transitions, opening opportunities for designing materials with tunable electronic properties.

2.
Proc Natl Acad Sci U S A ; 120(28): e2303312120, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37410867

RESUMO

New properties and exotic quantum phenomena can form due to periodic nanotextures, including Moire patterns, ferroic domains, and topologically protected magnetization and polarization textures. Despite the availability of powerful tools to characterize the atomic crystal structure, the visualization of nanoscale strain-modulated structural motifs remains challenging. Here, we develop nondestructive real-space imaging of periodic lattice distortions in thin epitaxial films and report an emergent periodic nanotexture in a Mott insulator. Specifically, we combine iterative phase retrieval with unsupervised machine learning to invert the diffuse scattering pattern from conventional X-ray reciprocal-space maps into real-space images of crystalline displacements. Our imaging in PbTiO3/SrTiO3 superlattices exhibiting checkerboard strain modulation substantiates published phase-field model calculations. Furthermore, the imaging of biaxially strained Mott insulator Ca2RuO4 reveals a strain-induced nanotexture comprised of nanometer-thin metallic-structure wires separated by nanometer-thin Mott-insulating-structure walls, as confirmed by cryogenic scanning transmission electron microscopy (cryo-STEM). The nanotexture in Ca2RuO4 film is induced by the metal-to-insulator transition and has not been reported in bulk crystals. We expect the phasing of diffuse X-ray scattering from thin crystalline films in combination with cryo-STEM to open a powerful avenue for discovering, visualizing, and quantifying the periodic strain-modulated structures in quantum materials.


Assuntos
Filmes Cinematográficos , Refração Ocular , Aprendizado de Máquina não Supervisionado
3.
Nat Commun ; 8(1): 852, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021552

RESUMO

In mixed-valent Kondo lattice systems, such as YbAl3, interactions between localized and delocalized electrons can lead to fluctuations between two different valence configurations with changing temperature or pressure. The impact of this change on the momentum-space electronic structure is essential for understanding their emergent properties, but has remained enigmatic. Here, by employing a combination of molecular beam epitaxy and in situ angle-resolved photoemission spectroscopy we show that valence fluctuations can lead to dramatic changes in the Fermi surface topology, even resulting in a Lifshitz transition. As the temperature is lowered, a small electron pocket in YbAl3 becomes completely unoccupied while the low-energy ytterbium (Yb) 4f states become increasingly itinerant, acquiring additional spectral weight, longer lifetimes, and well-defined dispersions. Our work presents a unified picture of how local valence fluctuations connect to momentum-space concepts such as band filling and Fermi surface topology in mixed valence systems.How the electronic structure of a mixed-valence system changes with respect to local chemical environment remains elusive. Here, Chatterjee et al. show that valence fluctuations of YbAl3 can lead to dramatic changes in the Fermi surface topology in reciprocal space.


Assuntos
Compostos de Alumínio/química , Itérbio/química , Estrutura Molecular
4.
Phys Rev Lett ; 117(14): 147002, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27740780

RESUMO

In the cuprates, carrier doping of the Mott insulating parent state is necessary to realize superconductivity as well as a number of other exotic states involving charge or spin density waves. Cation substitution is the primary method for doping carriers into these compounds, and is the only known method for electron doping in these materials. Here, we report electron doping without cation substitution in epitaxially stabilized thin films of La_{2}CuO_{4} grown via molecular-beam epitaxy. We use angle-resolved photoemission spectroscopy to directly measure their electronic structure and conclusively determine that these compounds are electron doped with a carrier concentration of 0.09±0.02 e^{-}/Cu. We propose that intrinsic defects, most likely oxygen vacancies, are the sources of doped electrons in these materials. Our results suggest a new approach to electron doping in the cuprates, one which could lead to a more detailed experimental understanding of their properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...