Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38255199

RESUMO

Synapse loss is the principal cause of cognitive decline in Alzheimer's disease (AD) and related disorders (ADRD). Synapse development depends on the intricate dynamics of the neuronal cytoskeleton. Cofilin, the major protein regulating actin dynamics, can be sequestered into cofilactin rods, intra-neurite bundles of cofilin-saturated actin filaments that can disrupt vesicular trafficking and cause synaptic loss. Rods are a brain pathology in human AD and mouse models of AD and ADRD. Eliminating rods is the focus of this paper. One pathway for rod formation is triggered in ~20% of rodent hippocampal neurons by disease-related factors (e.g., soluble oligomers of Amyloid-ß (Aß)) and requires cellular prion protein (PrPC), active NADPH oxidase (NOX), and cytokine/chemokine receptors (CCRs). FDA-approved antagonists of CXCR4 and CCR5 inhibit Aß-induced rods in both rodent and human neurons with effective concentrations for 50% rod reduction (EC50) of 1-10 nM. Remarkably, two D-amino acid receptor-active peptides (RAP-103 and RAP-310) inhibit Aß-induced rods with an EC50 of ~1 pM in mouse neurons and ~0.1 pM in human neurons. These peptides are analogs of D-Ala-Peptide T-Amide (DAPTA) and share a pentapeptide sequence (TTNYT) antagonistic to several CCR-dependent responses. RAP-103 does not inhibit neuritogenesis or outgrowth even at 1 µM, >106-fold above its EC50. N-terminal methylation, or D-Thr to D-Ser substitution, decreases the rod-inhibiting potency of RAP-103 by 103-fold, suggesting high target specificity. Neither RAP peptide inhibits neuronal rod formation induced by excitotoxic glutamate, but both inhibit rods induced in human neurons by several PrPC/NOX pathway activators (Aß, HIV-gp120 protein, and IL-6). Significantly, RAP-103 completely protects against Aß-induced loss of mature and developing synapses and, at 0.1 nM, reverses rods in both rodent and human neurons (T½ ~ 3 h) even in the continuous presence of Aß. Thus, this orally available, brain-permeable peptide should be highly effective in reducing rod pathology in multifactorial neurological diseases with mixed proteinopathies acting through PrPC/NOX.

2.
Biomedicines ; 11(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38001943

RESUMO

Cofilactin rod pathology, which can initiate synapse loss, has been extensively studied in rodent neurons, hippocampal slices, and in vivo mouse models of human neurodegenerative diseases such as Alzheimer's disease (AD). In these systems, rod formation induced by disease-associated factors, such as soluble oligomers of Amyloid-ß (Aß) in AD, utilizes a pathway requiring cellular prion protein (PrPC), NADPH oxidase (NOX), and cytokine/chemokine receptors (CCR5 and/or CXCR4). However, rod pathways have not been systematically assessed in a human neuronal model. Here, we characterize glutamatergic neurons differentiated from human-induced pluripotent stem cells (iPSCs) for the formation of rods in response to activators of the PrPC-dependent pathway. Optimization of substratum, cell density, and use of glial-conditioned medium yielded a robust system for studying the development of Aß-induced rods in the absence of glia, suggesting a cell-autonomous pathway. Rod induction in younger neurons requires ectopic expression of PrPC, but this dependency disappears by Day 55. The quantification of proteins within the rod-inducing pathway suggests that increased PrPC and CXCR4 expression may be factors in the doubling of the rod response to Aß between Days 35 and 55. FDA-approved antagonists to CXCR4 and CCR5 inhibit the rod response. Rods were predominantly observed in dendrites, although severe cytoskeletal disruptions prevented the assignment of over 40% of the rods to either an axon or dendrite. In the absence of glia, a condition in which rods are more readily observed, neurons mature and fire action potentials but do not form functional synapses. However, PSD95-containing dendritic spines associate with axonal regions of pre-synaptic vesicles containing the glutamate transporter, VGLUT1. Thus, our results identified stem cell-derived neurons as a robust model for studying cofilactin rod formation in a human cellular environment and for developing effective therapeutic strategies for the treatment of dementias arising from multiple proteinopathies with different rod initiators.

3.
Drug Alcohol Depend ; 238: 109556, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35843139

RESUMO

Chemokine-opioid crosstalk is a physiological crossroads for influencing therapeutic and adverse effects of opioids. Activation of chemokine receptors, especially CCR2, CCR5 and CXCR4, reduces opioid-induced analgesia by desensitizing OPRM1 receptors. Chemokine receptor antagonists (CRAs) enhance opioid analgesia, but knowledge about how CRAs impact adverse opioid effects remains limited. We examined effects of RAP-103, a multi-CRA orally active peptide analog of "DAPTA", on opioid-derived dependence, reinforcement, and respiratory depression in male rats and on changes in chemokine and OPRM1 (µ opioid) receptor levels in mesolimbic substrates during opioid abstinence. In rats exposed to chronic morphine (75 mg pellet x 7 d), daily RAP-103 (1 mg/kg, IP) treatment reduced the severity of naloxone-precipitated withdrawal responses. For self-administration (SA) studies, RAP-103 (1 mg/kg, IP) reduced heroin acquisition (0.1 mg/kg/inf) and reinforcing efficacy (assessed by motivation on a progressive-ratio reinforcement schedule) but did not impact sucrose intake. RAP-103 (1-3 mg/kg, IP) also normalized the deficits in oxygen saturation and enhancement of respiratory rate caused by morphine (5 mg/kg, SC) exposure. Abstinence from chronic morphine elicited brain-region specific changes in chemokine receptor protein levels. CCR2 and CXCR4 were increased in the ventral tegmental area (VTA), whereas CCR2 and CCR5 were reduced in the nucleus accumbens (NAC). Effects of RAP-103 (1 mg/kg, IP) were focused in the NAC, where it normalized morphine-induced deficits in CCR2 and CCR5. These results identify CRAs as potential biphasic function opioid signaling modulators to enhance opioid analgesia and inhibit opioid-derived dependence and respiratory depression.


Assuntos
Analgésicos Opioides , Insuficiência Respiratória , Analgésicos Opioides/farmacologia , Animais , Masculino , Morfina/farmacologia , Núcleo Accumbens , Peptídeos/metabolismo , Peptídeos/farmacologia , Ratos , Receptores de Quimiocinas/metabolismo , Receptores Opioides , Receptores Opioides mu , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/tratamento farmacológico
4.
Life Sci ; 306: 120788, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35817166

RESUMO

AIMS: We determined the ability of the multi-chemokine receptor (CCR2/CCR5/CCR8) antagonist RAP-103 to modulate pain behaviors in an acute model of surgical pain, with and without an added opioid (morphine), and by itself in a chronic model of Streptozotocin (STZ)-induced diabetic peripheral neuropathy (DPN). MATERIALS AND METHODS: Pain behaviors were assessed by mechanical and thermal tests in rats. Cytokine and chemokine biomarkers in sciatic nerve and spinal cord were assessed by in situ qPCR. KEY FINDINGS: In the incisional pain assay, RAP-103 (0.01-1 mg/kg, i.p.) alone had no antiallodynic effect post-surgery. RAP-103 (0.5 mg/kg) when co-administered with morphine (0.5-5 mg/kg), reduced the ED50 of morphine from 3.19 mg/kg to 1.42 mg/kg. In a DPN model, rats exhibited persistent mechanical and cold allodynia. Oral administration of RAP-103 (0.5-0.02 mg/kg/day) resulted in a complete reversal of established hypersensitivity in DPN rats (P < .001), which gradually returned to pain hypersensitivity after the cessation of the treatment. The mRNA expression of cytokines, IL-1ß, TNFα; chemokines CCL2, CCL3; and chemokine receptors CCR2 and CCR5 in DPN rat sciatic nerve, but not spinal cord, were significantly increased. RAP-103 resulted in significant reductions in sciatic nerve expression of IL-1ß, TNFα and CCL3 in STZ-induced diabetic rats with trends toward lower levels for CCL2 and CCR5, while CCR2 was unchanged. SIGNIFICANCE: In acute pain, co-administration of RAP-103 with morphine provided the same antinociceptive effect with a reduced dose of morphine, reducing opioid side-effects and risks. RAP-103 by itself is an effective non-opioid antinociceptive treatment for diabetic neuropathic pain.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Neuralgia , Animais , Ratos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Hiperalgesia/metabolismo , Morfina/farmacologia , Morfina/uso terapêutico , Neuralgia/metabolismo , Peptídeos/uso terapêutico , Receptores de Quimiocinas , Fator de Necrose Tumoral alfa
5.
Neurochem Int ; 119: 184-189, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29248693

RESUMO

Chemokine signaling is important in neuropathic pain, with microglial cells expressing chemokine (C-C motif) receptor CCR2, CCR5 and CCR8, all playing key roles. In the previous report (Padi et al., 2012), oral administration of a short peptide, RAP-103, for 7 days fully prevents mechanical allodynia and inhibits the development of thermal hyperalgesia after partial ligation of the sciatic nerve in rodents. As for the mechanism of the inhibiting effect of RAP-103, it was speculated to be due to dual blockade of CCR2 and CCR5. We report here that RAP-103 exhibits stronger antagonism for CCR8 (half maximal inhibitory concentration [IC50] 7.7 fM) compared to CCR5 (IC50 < 100 pM) in chemotaxis using primary cultured mouse microglia. In addition, RAP-103 at a concentration of 0.1 pM completely inhibits membrane ruffling and phagocytosis induced by chemokine (C-C motif) ligand 1 (CCL1), an agonist for CCR8. It has been shown that CCL1/CCR8 signaling is important in tactile allodynia induced by nerve ligation. Therefore, CCR8, among other chemokine receptors such as CCR2/CCR5, could be the most potent target for RAP-103. Inhibitory effects of RAP-103 on plural chemokine receptors may play important roles for broad clinical use in neuropathic pain treatment.


Assuntos
Quimiocina CCL1/efeitos dos fármacos , Microglia/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Peptídeos/farmacologia , Receptores CCR8/efeitos dos fármacos , Animais , Quimiotaxia/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Camundongos , Nervo Isquiático/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
6.
Pain ; 153(1): 95-106, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22033364

RESUMO

Chemokine signaling is important in neuropathic pain, with microglial cells expressing CCR2 playing a well-established key role. DAPTA, a HIV gp120-derived CCR5 entry inhibitor, has been shown to inhibit CCR5-mediated monocyte migration and to attenuate neuroinflammation. We report here that as a stabilized analog of DAPTA, the short peptide RAP-103 exhibits potent antagonism for both CCR2 (half maximal inhibitory concentration [IC50] 4.2 pM) and CCR5 (IC50 0.18 pM) in monocyte chemotaxis. Oral administration of RAP-103 (0.05-1 mg/kg) for 7 days fully prevents mechanical allodynia and inhibits the development of thermal hyperalgesia after partial ligation of the sciatic nerve in rats. Administered from days 8 to 12, RAP-103 (0.2-1 mg/kg) reverses already established hypersensitivity. RAP-103 relieves behavioral hypersensitivity, probably through either or both CCR2 and CCR5 blockade, because by using genetically deficient animals, we demonstrated that in addition to CCR2, CCR5 is also required for the development of neuropathic pain. Moreover, RAP-103 is able to reduce spinal microglial activation and monocyte infiltration, and to inhibit inflammatory responses evoked by peripheral nerve injury that cause chronic pain. Our findings suggest that targeting CCR2/CCR5 should provide greater efficacy than targeting CCR2 or CCR5 alone, and that dual CCR2/CCR5 antagonist RAP-103 has the potential for broad clinical use in neuropathic pain treatment.


Assuntos
Antagonistas dos Receptores CCR5 , Quimiotaxia de Leucócito/efeitos dos fármacos , Inflamação/tratamento farmacológico , Monócitos/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Peptídeos/antagonistas & inibidores , Receptores CCR2/antagonistas & inibidores , Animais , Hiperalgesia/tratamento farmacológico , Masculino , Ratos , Ratos Sprague-Dawley
7.
Antivir Chem Chemother ; 18(5): 285-95, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18046961

RESUMO

Monocytes/macrophages (M/M) are strategic reservoirs of HIV-1, spreading the virus to other cells and inducing apoptosis in T-lymphocytes, astrocytes and neurons. M/M are commonly infected by R5 HIV-1 strains, which use the chemokine receptor CCR5. D-Ala-peptide T-amide (DAPTA), or Peptide T, named for its high threonine content (ASTTTNYT), is a synthetic peptide comprised of eight amino acids (185-192) of the gp120 V2 region and functions as a viral entry inhibitor by targeting selectively CCR5. The anti-HIV-1 activity of DAPTA was evaluated in M/M infected with R5 HIV-1 strains. DAPTA at 10(-9) M inhibited HIV-1 replication in M/M by > 90%. PCR analysis of viral cDNA in M/M showed that DAPTA blocks HIV entry and in this way prevents HIV-1 infection. Moreover, DAPTA acts as a strong inhibitor and was more active than the non-peptidic CCR5 antagonist TAK-779 in inhibiting apoptosis (mediated by RS HIV-1 strains produced and released by infected M/M) on a neuroblastoma cell line. Our results suggest that antiviral compounds which interfere with receptor mechanisms such as CCR5 could be important, either alone or in combination with other antiretroviral treatments, in preventing HIV infection in the central nervous system and the consequential neuronal damage that leads to neuronal AIDS.


Assuntos
Apoptose/efeitos dos fármacos , Antagonistas dos Receptores CCR5 , HIV-1/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Peptídeo T/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Anticorpos Monoclonais/efeitos dos fármacos , Anticorpos Monoclonais/imunologia , Apoptose/fisiologia , Sítios de Ligação , Linhagem Celular , DNA Viral/efeitos dos fármacos , Relação Dose-Resposta a Droga , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , Proteína gp120 do Envelope de HIV/farmacologia , Humanos , Macrófagos/imunologia , Macrófagos/virologia , Testes de Sensibilidade Microbiana , Monócitos/virologia , Neurônios/fisiologia , Neurônios/virologia , Peptídeo T/síntese química , Peptídeo T/química , Receptores CCR5/fisiologia , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
8.
Antiviral Res ; 67(2): 83-92, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16002156

RESUMO

The chemokine receptor CCR5 plays a crucial role in transmission of HIV isolates, which predominate in the early and middle stages of infection, as well as those, which populate the brain and cause neuro-AIDS. CCR5 is therefore an attractive therapeutic target for design of entry inhibitors. Specific rapid filtration binding assays have been useful for almost 30 years both for drug discovery and understanding molecular mechanisms of drug action. Reported in 1986, prior to discovery of chemokine co-receptors and so thought to act at CD4, peptide T (DAPTA) appears to greatly reduce cellular viral reservoirs in both HAART experienced and treatment naïve patients, without toxicities. We here report that DAPTA potently inhibits specific CD4-dependent binding of gp120 Bal (IC50=0.06 nM) and CM235 (IC50=0.32 nM) to CCR5. In co-immunoprecipitation studies, DAPTA (1 nM) blocks formation of the gp120/sCD4 complex with CCR5. Confocal microscopic studies of direct FITC-DAPTA binding to CCR5+, but not CCR5-, cells show that CCR5 is a DAPTA receptor. The capability of DAPTA to potently block gp120-CD4 binding to the major co-receptor CCR5 explains its molecular and therapeutic mechanism of action as a selective antiviral entry inhibitor for R5 tropic HIV-1 isolates.


Assuntos
Antagonistas dos Receptores CCR5 , HIV-1/efeitos dos fármacos , Peptídeo T/farmacologia , Linhagem Celular , Infecções por HIV/tratamento farmacológico , Humanos , Peptídeo T/uso terapêutico , Receptores CCR5/metabolismo , Replicação Viral/efeitos dos fármacos
9.
Peptides ; 24(7): 1093-8, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-14499289

RESUMO

D-Ala-Peptide T-amide (DAPTA), the first viral entry inhibitor, blocks chemokine (CCR5) receptors, not CD4. Early investigators could not "replicate" DAPTAs potent in vitro antiviral effect using the lab-adapted, X4, peptide T-insensitive strain, IIIB, delaying clinical virological studies. We now report that DAPTA, administered to eleven long-term infected (mean=17 years) patients with stable persistent plasma "virus" for up to 32 weeks did not change this level. Infectious virus could not be isolated from their plasma suggesting HIV RNA was devoid of replicative capacity. Progressively less actual virus (P<0.01) could be isolated from white blood cells (PBMCs). DAPTA flushed the monocyte reservoir to undetectable viral levels in most patients. Five of eleven had a mean CD4 increase of 33%. Immune benefits also included a four-fold increase in gamma-interferon-secreting T-cells (antiviral cytotoxic T-cells) in the absence of drug-related toxicity. All five CD4 responders had increases in antiviral T cells and decreases in infected monocytes, an argument for initiating further studies promptly.


Assuntos
Infecções por HIV/tratamento farmacológico , Peptídeo T/uso terapêutico , Replicação Viral/efeitos dos fármacos , Administração Intranasal , Terapia Antirretroviral de Alta Atividade , Antivirais/uso terapêutico , Contagem de Linfócito CD4 , Linfócitos T CD8-Positivos/química , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/virologia , Técnicas de Cocultura , DNA Viral/análise , Proteína do Núcleo p24 do HIV/análise , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/isolamento & purificação , Humanos , Receptores de Lipopolissacarídeos/análise , Macrófagos/química , Macrófagos/virologia , Monócitos/química , Monócitos/virologia , Neutrófilos/química , Neutrófilos/virologia , Peptídeo T/farmacologia , Reação em Cadeia da Polimerase , RNA Viral/sangue , Carga Viral , Integração Viral/efeitos dos fármacos
10.
Curr HIV Res ; 1(1): 51-67, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15043212

RESUMO

Peptide T, named for its high threonine content (ASTTTNYT), was derived by a database search which assumed that a relevant receptor binding epitope within env (gp120) would have sequence homology to a known signaling peptide. Binding of radiolabeled gp120 to brain membranes was displaced by peptide T and three octapeptide analogs (including "DAPTA", Dala1-peptide T-amide, the protease-resistant analog now in Phase II clinical trials) with the same potency that these four octapeptides blocked infectivity of an early passage patient isolate. This 1986 report was controversial due to a number of laboratories' failure to find peptide T antiviral effects; we now know that peptide T is a potent HIV entry inhibitor selectively targeting CCR5 receptors with minimal effects on the X4 tropic lab adapted virus exclusively in use at that time. Early clinical trials, which demonstrated lack of toxicity and focused on neurological and neurocognitive benefits, are reviewed and data from a small ongoing Phase II trial--the first to assess peptide T's antiviral effects--are presented. Studies using infectivity, receptor binding, chemotaxis, and blockade of gp120-induced neurotoxicity in vitro and in vivo are reviewed, discussed and presented here. Peptide T and analogs of its core pentapeptide, present near the V2 stem of numerous gp120 isolates, are potent ligands for CCR5. Clinical data showing peptide T's immunomodulation of plasma cytokine levels and increases in the percentage of IFNgamma secreting CD8+ T cells in patients with HIV disease are presented and suggests additional therapeutic mechanisms via regulation of specific immunity.


Assuntos
Antagonistas dos Receptores CCR5 , Infecções por HIV/tratamento farmacológico , HIV-1 , Peptídeo T/farmacologia , Ensaios Clínicos Fase II como Assunto , Humanos , Peptídeo T/uso terapêutico , Receptores de HIV/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos
11.
Peptides ; 23(12): 2279-81, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12535709

RESUMO

In humans, HIV infection reduces growth hormone (GH) secretion contributing to AIDS wasting. In rats, the HIV envelope protein gp120 alone blocks GH secretion both in vitro and in vivo through GH-releasing hormone receptors. Peptide T, a modified octapeptide derived from gp120, normalizes GH secretion. We now report that an intravenous bolus of peptide T normalizes nocturnal GH secretion in two out of three children with AIDS. These results, coupled with the lack of toxicity of this experimental AIDS therapeutic, justify clinical trials for AIDS wasting and pediatric AIDS. A clinical and basic science update on peptide T appears in Current HIV Research.


Assuntos
Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Fármacos Anti-HIV/farmacologia , Hormônio do Crescimento/metabolismo , Peptídeo T/farmacologia , Adolescente , Criança , Hormônio do Crescimento/sangue , Hormônio do Crescimento/efeitos dos fármacos , HIV/efeitos dos fármacos , Humanos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...