Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(26): 16622-16631, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38904174

RESUMO

Atomically precise graphene nanoribbons (GNRs) have a wide range of electronic properties that depend sensitively on their chemical structure. Several types of GNRs have been synthesized on metal surfaces through selective surface-catalyzed reactions. The resulting GNRs are adsorbed on the metal surface, which may lead to hybridization between the GNR orbitals and those of the substrate. This makes investigation of the intrinsic electronic properties of GNRs more difficult and also rules out capacitive gating. Here, we demonstrate the formation of a dielectric gold chloride adlayer that can intercalate underneath GNRs on the Au(111) surface. The intercalated gold chloride adlayer electronically decouples the GNRs from the metal and leads to a substantial hole-doping of the GNRs. Our results introduce an easily accessible tool in the in situ characterization of GNRs grown on Au(111) that allows for exploration of their electronic properties in a heavily hole-doped regime.

2.
ACS Nanosci Au ; 4(2): 128-135, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38644965

RESUMO

Surface-catalyzed reactions have been used to synthesize carbon nanomaterials with atomically predefined structures. The recent discovery of a gold surface-catalyzed [3 + 3] cycloaromatization of isopropyl substituted arenes has enabled the on-surface synthesis of arylene-phenylene copolymers, where the surface activates the isopropyl substituents to form phenylene rings by intermolecular coupling. However, the resulting polymers suffered from undesired cross-linking when more than two molecules reacted at a single site. Here we show that such cross-links can be prevented through steric protection by attaching the isopropyl groups to larger arene cores. Upon thermal activation of isopropyl-substituted 8,9-dioxa-8a-borabenzo[fg]tetracene on Au(111), cycloaromatization is observed to occur exclusively between the two molecules. The cycloaromatization intermediate formed by the covalent linking of two molecules is prevented from reacting with further molecules by the wide benzotetracene core, resulting in highly selective one-to-one coupling. Our findings extend the versatility of the [3 + 3] cycloaromatization of isopropyl substituents and point toward steric protection as a powerful concept for suppressing competing reaction pathways in on-surface synthesis.

3.
Precis Chem ; 2(2): 81-87, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425747

RESUMO

On-surface synthesis has emerged as a powerful strategy to fabricate unprecedented forms of atomically precise graphene nanoribbons (GNRs). However, the on-surface synthesis of zigzag GNRs (ZGNR) has met with only limited success. Herein, we report the synthesis and on-surface reactions of 2,7-dibromo-9,9'-bianthryl as the precursor toward π-extended ZGNRs. Characterization by scanning tunneling microscopy and high-resolution noncontact atomic force microscopy clearly demonstrated the formation of anthracene-fused ZGNRs. Unique skeletal rearrangements were also observed, which could be explained by intramolecular Diels-Alder cycloaddition. Theoretical calculations of the electronic properties of the anthracene-fused ZGNRs revealed spin-polarized edge-states and a narrow bandgap of 0.20 eV.

4.
Nat Commun ; 15(1): 1910, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429274

RESUMO

On-surface synthesis relies on carefully designed molecular precursors that are thermally activated to afford desired, covalently coupled architectures. Here, we study the intramolecular reactions of vinyl groups in a poly-para-phenylene-based model system and provide a comprehensive description of the reaction steps taking place on the Au(111) surface under ultrahigh vacuum conditions. We find that vinyl groups successfully cyclize with the phenylene rings in the ortho positions, forming a dimethyl-dihydroindenofluorene as the repeating unit, which can be further dehydrogenated to a dimethylene-dihydroindenofluorene structure. Interestingly, the obtained polymer can be transformed cleanly into thermodynamically stable polybenzo[k]tetraphene at higher temperature, involving a previously elusive pentagon-to-hexagon transformation via ring opening and rearrangement on a metal surface. Our insights into the reaction cascade unveil fundamental chemical processes involving vinyl groups on surfaces. Because the formation of specific products is highly temperature-dependent, this innovative approach offers a valuable tool for fabricating complex, low-dimensional nanostructures with high precision and yield.

5.
Nat Commun ; 15(1): 2738, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548739

RESUMO

The functionality of atomic quantum emitters is intrinsically linked to their host lattice coordination. Structural distortions that spontaneously break the lattice symmetry strongly impact their optical emission properties and spin-photon interface. Here we report on the direct imaging of charge state-dependent symmetry breaking of two prototypical atomic quantum emitters in mono- and bilayer MoS2 by scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM). By changing the built-in substrate chemical potential, different charge states of sulfur vacancies (VacS) and substitutional rhenium dopants (ReMo) can be stabilized. Vac S - 1 as well as Re Mo 0 and Re Mo - 1 exhibit local lattice distortions and symmetry-broken defect orbitals attributed to a Jahn-Teller effect (JTE) and pseudo-JTE, respectively. By mapping the electronic and geometric structure of single point defects, we disentangle the effects of spatial averaging, charge multistability, configurational dynamics, and external perturbations that often mask the presence of local symmetry breaking.

6.
Phys Rev Lett ; 132(4): 046201, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38335341

RESUMO

Atomically precise graphene nanoflakes called nanographenes have emerged as a promising platform to realize carbon magnetism. Their ground state spin configuration can be anticipated by Ovchinnikov-Lieb rules based on the mismatch of π electrons from two sublattices. While rational geometrical design achieves specific spin configurations, further direct control over the π electrons offers a desirable extension for efficient spin manipulations and potential quantum device operations. To this end, we apply a site-specific dehydrogenation using a scanning tunneling microscope tip to nanographenes deposited on a Au(111) substrate, which shows the capability of precisely tailoring the underlying π-electron system and therefore efficiently manipulating their magnetism. Through first-principles calculations and tight-binding mean-field-Hubbard modeling, we demonstrate that the dehydrogenation-induced Au-C bond formation along with the resulting hybridization between frontier π orbitals and Au substrate states effectively eliminate the unpaired π electron. Our results establish an efficient technique for controlling the magnetism of nanographenes.

7.
J Am Chem Soc ; 146(4): 2474-2483, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38227949

RESUMO

Hopf et al. reported the high-temperature 6π-electrocyclization of cis-hexa-1,3-diene-5-yne to benzene in 1969. Subsequent studies using this cyclization have been limited by its very high reaction barrier. Here, we show that the reaction barrier for two model systems, (E)-1,3,4,6-tetraphenyl-3-hexene-1,5-diyne (1a) and (E)-3,4-bis(4-iodophenyl)-1,6-diphenyl-3-hexene-1,5-diyne (1b), is decreased by nearly half on a Au(111) surface. We have used scanning tunneling microscopy (STM) and noncontact atomic force microscopy (nc-AFM) to monitor the Hopf cyclization of enediynes 1a,b on Au(111). Enediyne 1a undergoes two sequential, quantitative Hopf cyclizations, first to naphthalene derivative 2, and finally to chrysene 3. Density functional theory (DFT) calculations reveal that a gold atom from the Au(111) surface is involved in all steps of this reaction and that it is crucial to lowering the reaction barrier. Our findings have important implications for the synthesis of novel graphene nanoribbons. Ullmann-like coupling of enediyne 1b at 20 °C on Au(111), followed by a series of Hopf cyclizations and aromatization reactions at higher temperatures, produces nanoribbons 12 and 13. These results show for the first time that graphene nanoribbons can be synthesized on a Au(111) surface using the Hopf cyclization mechanism.

8.
Adv Mater ; 35(48): e2306311, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37795919

RESUMO

Graphene nanoribbons (GNRs) have gained significant attention in nanoelectronics due to their potential for precise tuning of electronic properties through variations in edge structure and ribbon width. However, the synthesis of GNRs with highly sought-after zigzag edges (ZGNRs), critical for spintronics and quantum information technologies, remains challenging. In this study, a design motif for synthesizing a novel class of GNRs termed edge-extended ZGNRs is presented. This motif enables the controlled incorporation of edge extensions along the zigzag edges at regular intervals. The synthesis of a specific GNR instance-a 3-zigzag-rows-wide ZGNR-with bisanthene units fused to the zigzag edges on alternating sides of the ribbon axis is successfully demonstrated. The resulting edge-extended 3-ZGNR is comprehensively characterized for its chemical structure and electronic properties using scanning probe techniques, complemented by density functional theory calculations. The design motif showcased here opens up new possibilities for synthesizing a diverse range of edge-extended ZGNRs, expanding the structural landscape of GNRs and facilitating the exploration of their structure-dependent electronic properties.

9.
Nanoscale ; 15(41): 16766-16774, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37818609

RESUMO

Graphene nanoribbons (GNRs) exhibit a broad range of physicochemical properties that critically depend on their width and edge topology. GNRs with armchair edges (AGNRs) are usually more stable than their counterparts with zigzag edges (ZGNRs) where the low-energy spin-polarized edge states render the ribbons prone to being altered by undesired chemical reactions. On the other hand, such edge-localized states make ZGNRs highly appealing for applications in spintronic and quantum technologies. For GNRs fabricated via on-surface synthesis under ultrahigh vacuum conditions on metal substrates, the expected reactivity of zigzag edges is a serious concern in view of substrate transfer and device integration under ambient conditions, but corresponding investigations are scarce. Using 10-bromo-9,9':10',9''-teranthracene as a precursor, we have thus synthesized hexanthene (HA) and teranthene (TA) as model compounds for ultrashort GNRs with mixed armchair and zigzag edges, characterized their chemical and electronic structure by means of scanning probe methods, and studied their chemical reactivity upon air exposure by Raman spectroscopy. We present a detailed identification of molecular orbitals and vibrational modes, assign their origin to armchair or zigzag edges, and discuss the chemical reactivity of these edges based on characteristic Raman spectral features.

10.
Nano Lett ; 23(18): 8474-8480, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37671914

RESUMO

Bottom-up synthesized graphene nanoribbons (GNRs) are increasingly attracting interest due to their atomically controlled structure and customizable physical properties. In recent years, a range of GNR-based field-effect transistors (FETs) has been fabricated, with several demonstrating quantum-dot (QD) behavior at cryogenic temperatures. However, understanding the relationship between the cryogenic charge-transport characteristics and the number of the GNRs in the device is challenging, as the length and location of the GNRs in the junction are not precisely controlled. Here, we present a methodology based on a dual-gate FET that allows us to identify different scenarios, such as single GNRs, double or multiple GNRs in parallel, and a single GNR interacting with charge traps. Our dual-gate FET architecture therefore offers a quantitative approach for comprehending charge transport in atomically precise GNRs.

11.
Nat Electron ; 6(8): 572-581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636241

RESUMO

Graphene nanoribbons synthesized using bottom-up approaches can be structured with atomic precision, allowing their physical properties to be precisely controlled. For applications in quantum technology, the manipulation of single charges, spins or photons is required. However, achieving this at the level of single graphene nanoribbons is experimentally challenging due to the difficulty of contacting individual nanoribbons, particularly on-surface synthesized ones. Here we report the contacting and electrical characterization of on-surface synthesized graphene nanoribbons in a multigate device architecture using single-walled carbon nanotubes as the electrodes. The approach relies on the self-aligned nature of both nanotubes, which have diameters as small as 1 nm, and the nanoribbon growth on their respective growth substrates. The resulting nanoribbon-nanotube devices exhibit quantum transport phenomena-including Coulomb blockade, excited states of vibrational origin and Franck-Condon blockade-that indicate the contacting of individual graphene nanoribbons.

12.
ACS Nano ; 17(19): 18706-18715, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37578964

RESUMO

Bottom-up-synthesized graphene nanoribbons (GNRs) are an emerging class of designer quantum materials that possess superior properties, including atomically controlled uniformity and chemically tunable electronic properties. GNR-based devices are promising candidates for next-generation electronic, spintronic, and thermoelectric applications. However, due to their extremely small size, making electrical contact with GNRs remains a major challenge. Currently, the most commonly used methods are top metallic electrodes and bottom graphene electrodes, but for both, the contact resistance is expected to scale with overlap area. Here, we develop metallic edge contacts to contact nine-atom-wide armchair GNRs (9-AGNRs) after encapsulation in hexagonal boron-nitride (h-BN), resulting in ultrashort contact lengths. We find that charge transport in our devices occurs via two different mechanisms: at low temperatures (9 K), charges flow through single GNRs, resulting in quantum dot (QD) behavior with well-defined Coulomb diamonds (CDs), with addition energies in the range of 16 to 400 meV. For temperatures above 100 K, a combination of temperature-activated hopping and polaron-assisted tunneling takes over, with charges being able to flow through a network of 9-AGNRs across distances significantly exceeding the length of individual GNRs. At room temperature, our short-channel field-effect transistor devices exhibit on/off ratios as high as 3 × 105 with on-state current up to 50 nA at 0.2 V. Moreover, we find that the contact performance of our edge-contact devices is comparable to that of top/bottom contact geometries but with a significantly reduced footprint. Overall, our work demonstrates that 9-AGNRs can be contacted at their ends in ultra-short-channel FET devices while being encapsulated in h-BN.

13.
ACS Appl Nano Mater ; 6(15): 13935-13944, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37588262

RESUMO

Atomically precise graphene nanoribbons (GNRs) are predicted to exhibit exceptional edge-related properties, such as localized edge states, spin polarization, and half-metallicity. However, the absence of low-resistance nanoscale electrical contacts to the GNRs hinders harnessing their properties in field-effect transistors. In this paper, we make electrical contact with nine-atom-wide armchair GNRs using superconducting alloy MoRe as well as Pd (as a reference), which are two of the metals providing low-resistance contacts to carbon nanotubes. We take a step toward contacting a single GNR by fabricating electrodes with needlelike geometry, with about 20 nm tip diameter and 10 nm separation. To preserve the nanoscale geometry of the contacts, we develop a PMMA-assisted technique to transfer the GNRs onto the prepatterned electrodes. Our device characterizations as a function of bias voltage and temperature show thermally activated gate-tunable conductance in GNR-MoRe-based transistors.

14.
JACS Au ; 3(5): 1358-1364, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37234116

RESUMO

Fusion of three benzene rings in a triangular fashion gives rise to the smallest open-shell graphene fragment, the phenalenyl radical, whose π-extension leads to an entire family of non-Kekulé triangular nanographenes with high-spin ground states. Here, we report the first synthesis of unsubstituted phenalenyl on a Au(111) surface, which is achieved by combining in-solution synthesis of the hydro-precursor and on-surface activation by atomic manipulation, using the tip of a scanning tunneling microscope. Single-molecule structural and electronic characterizations confirm its open-shell S = 1/2 ground state that gives rise to Kondo screening on the Au(111) surface. In addition, we compare the phenalenyl's electronic properties with those of triangulene, the second homologue in the series, whose S = 1 ground state induces an underscreened Kondo effect. Our results set a new lower size limit in the on-surface synthesis of magnetic nanographenes that can serve as building blocks for the realization of new exotic quantum phases of matter.

15.
Nat Commun ; 14(1): 1018, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823140

RESUMO

Stacking two-dimensional layered materials such as graphene and transitional metal dichalcogenides with nonzero interlayer twist angles has recently become attractive because of the emergence of novel physical properties. Stacking of one-dimensional nanomaterials offers the lateral stacking offset as an additional parameter for modulating the resulting material properties. Here, we report that the edge states of twisted bilayer zigzag graphene nanoribbons (TBZGNRs) can be tuned with both the twist angle and the stacking offset. Strong edge state variations in the stacking region are first revealed by density functional theory (DFT) calculations. We construct and characterize twisted bilayer zigzag graphene nanoribbon (TBZGNR) systems on a Au(111) surface using scanning tunneling microscopy. A detailed analysis of three prototypical orthogonal TBZGNR junctions exhibiting different stacking offsets by means of scanning tunneling spectroscopy reveals emergent near-zero-energy states. From a comparison with DFT calculations, we conclude that the emergent edge states originate from the formation of flat bands whose energy and spin degeneracy are highly tunable with the stacking offset. Our work highlights fundamental differences between 2D and 1D twistronics and spurs further investigation of twisted one-dimensional systems.

16.
J Am Chem Soc ; 145(5): 2968-2974, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36708335

RESUMO

The design of open-shell carbon-based nanomaterials is at the vanguard of materials science, steered by their beneficial magnetic properties like weaker spin-orbit coupling than that of transition metal atoms and larger spin delocalization, which are of potential relevance for future spintronics and quantum technologies. A key parameter in magnetic materials is the magnetic exchange coupling (MEC) between unpaired spins, which should be large enough to allow device operation at practical temperatures. In this work, we theoretically and experimentally explore three distinct families of nanographenes (NGs) (A, B, and C) featuring majority zigzag peripheries. Through many-body calculations, we identify a transition from a closed-shell ground state to an open-shell ground state upon an increase of the molecular size. Our predictions indicate that the largest MEC for open-shell NGs occurs in proximity to the transition between closed-shell and open-shell states. Such predictions are corroborated by the on-surface syntheses and structural, electronic, and magnetic characterizations of three NGs (A[3,5], B[4,5], and C[4,3]), which are the smallest open-shell systems in their respective chemical families and are thus located the closest to the transition boundary. Notably, two of the NGs (B[4,5] and C[4,3]) feature record values of MEC (close to 200 meV) measured on the Au(111) surface. Our strategy for maximizing the MEC provides perspectives for designing carbon nanomaterials with robust magnetic ground states.

17.
Angew Chem Int Ed Engl ; 61(49): e202212354, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36217889

RESUMO

Dehydrogenation reactions are key steps in many metal-catalyzed chemical processes and in the on-surface synthesis of atomically precise nanomaterials. The principal role of the metal substrate in these reactions is undisputed, but the role of metal adatoms remains, to a large extent, unanswered, particularly on gold substrates. Here, we discuss their importance by studying the surface-assisted cyclodehydrogenation on Au(111) as an ideal model case. We choose a polymer theoretically predicted to give one of two cyclization products depending on the presence or absence of gold adatoms. Scanning probe microscopy experiments observe only the product associated with adatoms. We challenge the prevalent understanding of surface-assisted cyclodehydrogenation, unveiling the catalytic role of adatoms and their effect on regioselectivity. The study adds new perspectives to the understanding of metal catalysis and the design of on-surface synthesis protocols for novel carbon nanomaterials.

18.
Small ; 18(31): e2202301, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35713270

RESUMO

The electronic, optical, and magnetic properties of graphene nanoribbons (GNRs) can be engineered by controlling their edge structure and width with atomic precision through bottom-up fabrication based on molecular precursors. This approach offers a unique platform for all-carbon electronic devices but requires careful optimization of the growth conditions to match structural requirements for successful device integration, with GNR length being the most critical parameter. In this work, the growth, characterization, and device integration of 5-atom wide armchair GNRs (5-AGNRs) are studied, which are expected to have an optimal bandgap as active material in switching devices. 5-AGNRs are obtained via on-surface synthesis under ultrahigh vacuum conditions from Br- and I-substituted precursors. It is shown that the use of I-substituted precursors and the optimization of the initial precursor coverage quintupled the average 5-AGNR length. This significant length increase allowed the integration of 5-AGNRs into devices and the realization of the first field-effect transistor based on narrow bandgap AGNRs that shows switching behavior at room temperature. The study highlights that the optimized growth protocols can successfully bridge between the sub-nanometer scale, where atomic precision is needed to control the electronic properties, and the scale of tens of nanometers relevant for successful device integration of GNRs.

19.
Adv Sci (Weinh) ; 9(19): e2105906, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35302718

RESUMO

Magnetism is typically associated with d- or f-block elements, but can also appear in organic molecules with unpaired π-electrons. This has considerably boosted the interest in such organic materials with large potential for spintronics and quantum applications. While several materials showing either d/f or π-electron magnetism have been synthesized, the combination of both features within the same structure has only scarcely been reported. Open-shell porphyrins (Pors) incorporating d-block transition metal ions represent an ideal platform for the realization of such architectures. Herein, the preparation of a series of open-shell, π-extended Pors that contain magnetically active metal ions (i.e., CuII , CoII , and FeII ) through a combination of in-solution and on-surface synthesis is reported. A detailed study of the magnetic interplay between π- and d-electrons in these metalloPors has been performed by scanning probe methods and density functional theory calculations. For the Cu and FePors, ferromagnetically coupled π-electrons are determined to be delocalized over the Por edges. For the CoPor, the authors find a Kondo resonance resulting from the singly occupied CoII dz 2 orbital to dominate the magnetic fingerprint. The Fe derivative exhibits the highest magnetization of 3.67 µB (S≈2) and an exchange coupling of 16 meV between the π-electrons and the Fe d-states.

20.
Nat Commun ; 13(1): 511, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082284

RESUMO

Heteroatom substitution in acenes allows tailoring of their remarkable electronic properties, expected to include spin-polarization and magnetism for larger members of the acene family. Here, we present a strategy for the on-surface synthesis of three undecacene analogs substituted with four nitrogen atoms on an Au(111) substrate, by employing specifically designed diethano-bridged precursors. A similarly designed precursor is used to synthesize the pristine undecacene molecule. By comparing experimental features of scanning probe microscopy with ab initio simulations, we demonstrate that the ground state of the synthesized tetraazaundecacene has considerable open-shell character on Au(111). Additionally, we demonstrate that the electronegative nitrogen atoms induce a considerable shift in energy level alignment compared to the pristine undecacene, and that the introduction of hydro-aza groups causes local anti-aromaticity in the synthesized compounds. Our work provides access to the precise fabrication of nitrogen-substituted acenes and their analogs, potential building-blocks of organic electronics and spintronics, and a rich playground to explore π-electron correlation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...