Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 5(10): 849-858, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36268122

RESUMO

Targeted protein degradation (TPD) is a promising therapeutic modality to modulate protein levels and its application promises to reduce the "undruggable" proteome. Among TPD strategies, Proteolysis TArgeting Chimera (PROTAC) technology has shown a tremendous potential with attractive advantages when compared to the inhibition of the same target. While PROTAC technology has had a significant impact in scientific research, its application to degrade integral membrane proteins (IMPs) is still in its beginnings. Among the 15 compounds having entered clinical trials by the end of 2021, only two targets are membrane-associated proteins. In this review we are discussing the potential reasons which may underlie this, and we are presenting new tools that have been recently developed to solve these limitations and to empower the use of PROTACs to target IMPs.

2.
Open Biol ; 12(6): 220057, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35765818

RESUMO

Measuring the dynamics with which the regulatory complexes assemble and disassemble is a crucial barrier to our understanding of how the cell cycle is controlled that until now has been difficult to address. This considerable gap in our understanding is due to the difficulty of reconciling biochemical assays with single cell-based techniques, but recent advances in microscopy and gene editing techniques now enable the measurement of the kinetics of protein-protein interaction in living cells. Here, we apply fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy to study the dynamics of the cell cycle machinery, beginning with Cyclin B1 and its binding to its partner kinase Cdk1 that together form the major mitotic kinase. Although Cyclin B1 and Cdk1 are known to bind with high affinity, our results reveal that in living cells there is a pool of Cyclin B1 that is not bound to Cdk1. Furthermore, we provide evidence that the affinity of Cyclin B1 for Cdk1 increases during the cell cycle, indicating that the assembly of the complex is a regulated step. Our work lays the groundwork for studying the kinetics of protein complex assembly and disassembly during the cell cycle in living cells.


Assuntos
Edição de Genes , Ciclo Celular , Divisão Celular , Ciclina B1 , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...