Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 206: 74-7, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27041300

RESUMO

During sampling and analysis of alcohol-free beverages for food control purposes, a comparably high contamination of benzene (up to 4.6µg/L) has been detected in cherry-flavoured products, even when they were not preserved using benzoic acid (which is a known precursor of benzene formation). There has been some speculation in the literature that formation may occur from benzaldehyde, which is contained in natural and artificial cherry flavours. In this study, model experiments were able to confirm that benzaldehyde does indeed degrade to benzene under heating conditions, and especially in the presence of ascorbic acid. Analysis of a large collective of authentic beverages from the market (n=170) further confirmed that benzene content is significantly correlated to the presence of benzaldehyde (r=0.61, p<0.0001). In the case of cherry flavoured beverages, industrial best practices should include monitoring for benzene. Formulations containing either benzoic acid or benzaldehyde in combination with ascorbic acid should be avoided.


Assuntos
Ácido Ascórbico/química , Benzaldeídos/química , Benzeno/análise , Bebidas/análise , Temperatura Alta , Ácido Benzoico/química , Aromatizantes
2.
Int J Vitam Nutr Res ; 83(1): 67-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24220166

RESUMO

A methodology utilizing 1H NMR spectroscopy has been developed to measure the concentration of coenzyme Q10 (CoQ10) in dietary supplements. For sample preparation, a very simple dilution with deuterated chloroform and addition of internal standard is sufficient. CoQ10 produces a distinct peak of the CH groups in the isoprene side chain of the molecule in the δ 5.15 - 5.05 ppm range, where it can be distinguished from other matrix compounds. The method was shown to be of adequate sensitivity with a limit of detection (LOD) of 7.8 mg/L, to control the CoQ10 content in the majority of the products. The precision expressed as relative standard deviation was around 5 %; linearity was observed from 14 to 2000 mg/L (R = 0.99). The developed methodology was applied for the analysis of 21 food supplements (capsules, tablets, and liquid products). On the basis of the labeled amounts, only two products contained substantially lower concentrations of CoQ10 (57 % and 51 %). All other concentrations varied between 83 % and 190 % with respect to labeling. The developed NMR method may be used by quality assurance laboratories for routine control of CoQ10 products.


Assuntos
Suplementos Nutricionais/análise , Espectroscopia de Ressonância Magnética/métodos , Ubiquinona/análogos & derivados , Limite de Detecção , Fatores de Tempo , Ubiquinona/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...