Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Biomed Eng J ; 5: 74-82, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22043254

RESUMO

This paper presents experimental testing that has been performed on wireless communication devices as victims of electromagnetic interference (EMI). Wireless victims included universal serial bus (USB) network adapters and personal digital assistants (PDAs) equipped with IEEE 802.11b and Bluetooth technologies. The experimental data in this paper was gathered in an anechoic chamber and a gigahertz transverse electromagnetic (GTEM) cell to ensure reliable and repeatable results. This testing includes: Electromagnetic compatibility (EMC) testing performed in accordance with IEC 60601-1-2, an in-band sweep of EMC testing, and coexistence testing. The tests in this study show that a Bluetooth communication was able to coexist with other Bluetooth devices with no decrease in throughput and no communication breakdowns. However, testing revealed a significant decrease in throughput and increase in communication breakdowns when an 802.11b source is near an 802.11b victim. In a hospital setting decreased throughput and communication breakdowns can cause wireless medical devices to fail. It is therefore vital to have an understanding of the effect EMI can have on wireless communication devices.

3.
IEEE Trans Biomed Eng ; 52(3): 520-30, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15759582

RESUMO

This paper describes a novel simulator to perform electromagnetic compatibility (EMC) tests for active implantable medical devices (AIMDs) with electromagnetic fields emitted by security systems. The security system simulator was developed in response to over 100 incident reports over 17 years related to the interference of AIMD's with security systems and the lack of a standardized test method. The simulator was evaluated regarding field homogeneity, signal distortion, and maximum magnetic field strength levels. Small three-axis probes and a three-axis scanning system were designed to determine the spatial and temporal characteristics of the fields emitted by 12 different types of walk through metal detectors (WTMDs). Tests were performed on four implanted pacemakers with a saline phantom and correlated to a newly developed test method performed "in air" (without the phantom). Comparison of the simulator thresholds with tests performed in real WTMDs showed that the simulator is able to mimic the pacemaker interference. The interference thresholds found in the simulator indicate that pulsed magnetic fields are more likely to cause interference in pacemakers than sinusoidal fields. The security system simulator will help biomedical engineers, manufacturers of medical devices, and manufacturers of security systems to identify incompatible combinations of WTMDs and AIMDs early in the development stage.


Assuntos
Campos Eletromagnéticos , Análise de Falha de Equipamento/instrumentação , Análise de Falha de Equipamento/métodos , Marca-Passo Artificial , Próteses e Implantes , Medidas de Segurança
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...