Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cardiovasc Electrophysiol ; 34(11): 2273-2282, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37694672

RESUMO

BACKGROUND: Substrate-based ablation can treat uninducible or hemodynamically instability scar-related ventricular tachycardia (VT). However, whether a correlation exists between the critical VT isthmus and late activation zone (LAZ) during sinus rhythm (SR) is unknown. OBJECTIVE: To demonstrate the structural and functional properties of abnormal substrates and analyze the link between the VT circuit and abnormal activity during SR. METHODS: Thirty-six patients with scar-related VT (age, 50.0 ± 13.7 years and 86.1% men) who underwent VT ablation were reviewed. The automatic rhythmia ultrahigh resolution mapping system was used for electroanatomic substrate mapping. The clinical characteristics and mapping findings, particularly the LAZ characteristics during SR and VT, were analyzed. To determine the association between the LAZ during the SR and VT circuits, the LAZ was defined as five activation patterns: entrance, exit, core, blind alley, and conduction barrier. RESULTS: Forty-five VTs were induced in 36 patients, 91.1% of which were monomorphic. The LAZ of all patients was mapped during the SR and VT circuits, and the consistency of the anatomical locations of the LAZ and VT circuits was analyzed. Using the ultrahigh resolution mapping system, interconversion patterns, including the bridge, T, puzzle, maze, and multilayer types, were identified. VT ablation enabled precise ablation of abnormal late potential conduction channels. CONCLUSION: Five interconversion patterns of the LAZ during the SR and VT circuits were summarized. These findings may help formulate more precise substrate-based ablation strategies for scar-related VT and shorter procedure times.


Assuntos
Ablação por Cateter , Taquicardia Ventricular , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Feminino , Cicatriz , Técnicas Eletrofisiológicas Cardíacas , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/cirurgia , Frequência Cardíaca , Fatores de Tempo , Ablação por Cateter/efeitos adversos
2.
J Pathol ; 260(2): 190-202, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36825552

RESUMO

Amine oxidase copper-containing 3 (AOC3) is a member of the semicarbazide-sensitive amine oxidase enzyme family. It acts as an ectoenzyme catalysing the oxidative deamination of primary amines and generating hydrogen peroxide (H2 O2 ). While AOC3 is implicated in cardiovascular diseases such as atherosclerosis, its role in cardiac remodelling after myocardial infarction (MI) is unclear. In this study, we first confirmed a long-term upregulation of AOC3 in both cardiac myofibroblasts after MI in vivo and angiotensin II (ANGII)-treated cardiac fibroblasts in vitro. AOC3 knockdown not only inhibited the activation of cardiac fibroblasts induced by ANGII but also alleviated cardiac fibrosis in mice after MI. Using sh-AOC3 lentiviruses, exogenous recombinant AOC3 (r-AOC3), semicarbazide (an AOC3 inhibitor), and catalase (a hydrogen peroxide scavenger) treatments, we also demonstrated that AOC3 promoted H2 O2 generation, increased oxidative stress, and enhanced ERK1/2 activation, which were responsible for the activation of cardiac fibroblasts. In particular, AOC3 knockdown also improved cardiac function and hypertrophy after MI. Through a coculture system, we confirmed that AOC3 expressed on cardiac myofibroblasts was able to enhance oxidative stress and induce hypertrophy of cardiomyocytes by promoting H2 O2 generation. Similarly, r-AOC3 promoted H2 O2 generation and resulted in oxidative stress and hypertrophy of cardiomyocytes, which were almost inhibited by both semicarbazide and catalase. In conclusion, AOC3 plays a critical role in cardiac fibrosis and hypertrophy after MI by promoting the generation of H2 O2 . AOC3 is a promising therapeutic target against cardiac remodelling. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Peróxido de Hidrogênio , Infarto do Miocárdio , Camundongos , Animais , Catalase/genética , Cobre , Remodelação Ventricular , Moléculas de Adesão Celular , Aminas , Infarto do Miocárdio/genética , Hipertrofia , Fibrose , Semicarbazidas/farmacologia
3.
Pharmacol Res ; 178: 106186, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35306141

RESUMO

Doxorubicin (DOX) is a widely used and effective antineoplastic drug; however, its clinical application is limited by cardiotoxicity. A safe and effective strategy to prevent from doxorubicin-induced cardiotoxicity (DIC) is still beyond reach. Elabela (ELA), a new APJ ligand, has exerted cardioprotective effect against multiple cardiovascular diseases. Here, we asked whether ELA alleviates DIC. Mice were injected with DOX to established acute DIC. In vivo studies were assessed with echocardiography, serum cTnT and CK-MB, HW/BW ratio and WGA staining. Cell death and atrophy were measured by AM/PI staining and phalloidin staining respectively in vitro. Autophagic flux was monitored with Transmission electron microscopy in vivo, as well as LysoSensor and mRFP-GFP-LC3 puncta in vitro. Our results showed that ELA improved cardiac dysfunction in DIC mice. ELA administration also attenuated cell death and atrophy in DOX-challenged neonatal rat cardiomyocytes (NRCs). Additionally, we found that ELA restored DOX-induced autophagic flux blockage, which was evidenced by the reverse of p62 and LC3II, improvement of lysosome function and accelerated degradation of accumulated autolysosomes. Chloroquine, a classical autophagic flux inhibitor, blunted the improvement of ELA on cardiac dysfunction. At last, we revealed that ELA reversed DOX-induced downregulation of transcription factor EB (TFEB), and silencing TFEB by siRNA abrogated the effects of ELA on autophagic flux as well as cell death and atrophy in NRCs. In conclusion, this study indicated that ELA ameliorated DIC through enhancing autophagic flux via activating TFEB. ELA may become a potential target against DIC.


Assuntos
Cardiotoxicidade , Cardiopatias , Animais , Atrofia/metabolismo , Atrofia/patologia , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/farmacologia , Cardiotoxicidade/tratamento farmacológico , Doxorrubicina/farmacologia , Cardiopatias/metabolismo , Camundongos , Miócitos Cardíacos , Ratos
4.
J Cell Physiol ; 236(11): 7342-7355, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33928642

RESUMO

Vascular remodeling and restenosis are common complications after percutaneous coronary intervention. Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) play important roles in intimal hyperplasia-induced vascular restenosis. NK2 Homeobox 3 (Nkx2-3), a critical member of Nkx family, is involved in tissue differentiation and organ development. However, the role of Nkx2-3 in VSMCs proliferation and migration remains unknown. In this study, we used carotid balloon injury model and platelet-derived growth factor-BB (PDGF)-treated VSMCs as in vivo and in vitro experimental models. EdU assay and CCK-8 assay were used to detect cell proliferation. Migration was measured by scratch test. Hematoxylin and eosin staining and immunohistochemistry staining were used to evaluate the intimal hyperplasia. The autophagy level was detected by fluorescent mRFP-GFP-LC3 in vitro and by transmission electron microscopy in vivo. It was shown that Nkx2-3 was upregulated both in balloon injured carotid arteries and PDGF-stimulated VSMCs. Adenovirus-mediated Nkx2-3 overexpression inhibited intimal hyperplasia after balloon injury, and suppressed VSMCs proliferation and migration induced by PDGF. Conversely, silencing of Nkx2-3 by small interfering RNA exaggerated proliferation and migration of VSMCs. Furthermore, we found that Nkx2-3 enhanced autophagy level, while the autophagy inhibitor 3-MA eliminated the inhibitory effect of Nkx2-3 on VSMCs proliferation and migration both in vivo and in vitro. Moreover, Nkx2-3 promoted autophagy in VSMCs by activating the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) signaling pathway. These results demonstrated for the first time that Nkx2-3 inhibited VSMCs proliferation and migration through AMPK/mTOR-mediated autophagy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Lesões das Artérias Carótidas/enzimologia , Movimento Celular , Proliferação de Células , Proteínas de Homeodomínio/fisiologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/fisiologia , Animais , Autofagia/efeitos dos fármacos , Becaplermina/farmacologia , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/prevenção & controle , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Proteínas de Homeodomínio/genética , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/ultraestrutura , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/ultraestrutura , Neointima , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Transcrição/genética , Remodelação Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...