Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Discov Nano ; 18(1): 123, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798402

RESUMO

Run-time device-level reconfigurability has the potential to boost the performance and functionality of numerous circuits beyond the limits imposed by the integration density. The key ingredient for the implementation of reconfigurable electronics lies in ambipolarity, which is easily accessible in a substantial number of two-dimensional materials, either by contact engineering or architecture device-level design. In this work, we showcase graphene as an optimal solution to implement high-frequency reconfigurable electronics. We propose and analyze a split-gate graphene field-effect transistor, demonstrating its capability to perform as a dynamically tunable frequency multiplier. The study is based on a physically based numerical simulator validated and tested against experiments. The proposed architecture is evaluated in terms of its performance as a tunable frequency multiplier, able to switch between doubler, tripler or quadrupler operation modes. Different material and device parameters are analyzed, and their impact is assessed in terms of the reconfigurable graphene frequency multiplier performance.

2.
Nanotechnology ; 33(10)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34818631

RESUMO

Electronic devices based on bidimensional materials (2DMs) are the subject of an intense experimental research, that demands a tantamount theoretical activity. The latter must be hold up by a varied set of tools able to rationalize, explain and predict the operation principles of the devices. However, in the broad context of multi-scale computational nanoelectronics, there is currently a lack of simulation tools connecting atomistic descriptions with semi-classical mesoscopic device-level simulations and able to properly explain the performance of many state-of-the-art devices. To contribute to filling this gap we present a multi-scale approach that combines fine-level material calculations with a semi-classical drift-diffusion transport model. Its use is exemplified by assessing 2DM field effect transistors with strained channels, showing excellent capabilities to capture the changes in the crystal structure and their impact into the device performance. Interestingly, we verify the capacity of strain in monolayer GaSe to enhance the conduction of one type of carrier, enabling the possibility to mimic the effect of chemical doping on 2D materials. These results illustrate the great potential of the proposed approach to bridge levels of abstraction rarely connected before and thus contribute to the theoretical modeling of state-of-the-art 2DM-based devices.

3.
Nanoscale Adv ; 3(8): 2377-2382, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36133760

RESUMO

Two-dimensional materials (2DMs) are a promising alternative to complement and upgrade high-frequency electronics. However, in order to boost their adoption, the availability of numerical tools and physically-based models able to support the experimental activities and to provide them with useful guidelines becomes essential. In this context, we propose a theoretical approach that combines numerical simulations and small-signal modeling to analyze 2DM-based FETs for radio-frequency applications. This multi-scale scheme takes into account non-idealities, such as interface traps, carrier velocity saturation, or short channel effects, by means of self-consistent physics-based numerical calculations that later feed the circuit level via a small-signal model based on the dynamic intrinsic capacitances of the device. At the circuit stage, the possibilities range from the evaluation of the performance of a single device to the design of complex circuits combining multiple transistors. In this work, we validate our scheme against experimental results and exemplify its use and capability assessing the impact of the channel scaling on the performance of MoS2-based FETs targeting RF applications.

4.
Materials (Basel) ; 12(22)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766105

RESUMO

This work investigates the sources of resistive switching (RS) in recently reported laser-fabricated graphene oxide memristors by means of two numerical analysis tools linked to the Time Series Statistical Analysis and the use of the Quantum Point Contact Conduction model. The application of both numerical procedures points to the existence of a filament connecting the electrodes that may be interrupted at a precise point within the conductive path, resulting in resistive switching phenomena. These results support the existing model attributing the memristance of laser-fabricated graphene oxide memristors to the modification of a conductive path stoichiometry inside the graphene oxide.

5.
Nanoscale Adv ; 1(3): 1077-1085, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36133192

RESUMO

BioFETs based on two-dimensional materials (2DMs) offer a unique opportunity to enhance, at a low cost, the sensitivity of current biosensors enabling the design of compact devices compatible with standard CMOS technology. The unique combination of large exposed surface areas and minimal thicknesses of 2DMs is an outstanding feature for these devices, and the assessment of their behaviour requires combined experimental and theoretical efforts. In this work we present a 2D-material based BioFET simulator including complex electrolyte reactions and analysing different models for the electrolyte-molecule interaction. These models describe how the molecular charge is screened by the electrolyte ions when their distributions are modified. The electrolyte simulation is validated against experimental results as well as against the analytical predictions of the Debye-Hückel approximation. The role of the electrolyte charge screening as well as the impact of the interaction model on the device responsivity are analysed in detail. The results are discussed in order to conclude about the consequences of employing different interaction approximations for the simulation of BioFETs and more generally on the correct modelling of biomolecule-device interaction in BioFETs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...