Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 38(14): 2481-3, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23939087

RESUMO

This Letter, presents the fabrication of lossy mode resonance (LMR) devices based on titanium dioxide (TiO2)/ poly(sodium 4-styrenesulfonate) (PSS) coatings deposited on side-polished D-shaped optical fibers. TiO2 thin films have been obtained by means of the layer-by-layer (LbL) self-assembly technique. LbL enables us to produce smooth and homogeneous coatings on the polished side of the fiber. This permits us to couple light from the waveguide to the TiO2-coating/external medium region at specific wavelength ranges. The generation of LMRs depends on the coating thickness, so that thicker coatings can produce more resonances. LMRs are sensitive to the external medium refractive index, which allows its utilization as refractometers. The characteristic D-shaped architecture of the devices employed in this Letter enables us to distinguish TE and TM polarizations, which had not been possible before with regular optical fibers due to their cylindrical symmetry. The results presented here show for the first time the experimental demonstration of the generation of LMRs produced by both TM and TE polarizations. More specifically, for these TiO2/PSS thin films, the TM and TM modes of the LMRs show a wavelength shift of 226 nm for the first-order LMR and 56 nm for the second-order LMR.

2.
Opt Lett ; 37(1): 28-30, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22212780

RESUMO

This Letter presents the fabrication of optical fiber refractometers based on indium tin oxide (ITO) coatings deposited by sputtering with response in the visible region. ITO thin films have been sputtered by means of a rotating mechanism that enables the fabrication of smooth and homogeneous coatings onto the optical fiber core. The ITO coating acts as a resonance supporting layer. This permits us to couple light from the waveguide to the ITO-coating/external medium region at specific wavelength ranges. The device is sensitive to external medium refractive index, which allows its utilization as a refractometer. The sensitivity is dependent on the coating thickness, ranging from 523.21 to 1221 nm/refractive index unit in the explored sensors. The sensor development process is time effective compared to other techniques such as dip coating or layer-by-layer self-assembly, which is interesting in terms of mass production.


Assuntos
Fibras Ópticas , Refratometria/instrumentação , Compostos de Estanho/química , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...