Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Autism Dev Disord ; 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35593993

RESUMO

ATRX mutations are commonly associated with alpha-thalassaemia mental retardation syndrome (ATR-X syndrome) with a notable variable expressivity. This X-linked disorder is characterized by intellectual disability (ID) in a higher or lesser degree, in which the alpha-thalassaemia feature is not always present. Other phenotypic manifestations like facial dimorphism, hypotonia, microcephaly, skeletal abnormalities or urogenital malformations have been frequently observed in ATR-X syndrome. Herein, we report a missense ATRX mutation (Thr1621Met) in a patient with an autism spectrum disorder (ASD) diagnosis. Except for ID, no typical signs of ATR-X syndrome were found in the patient. These results confirm the extensive phenotypic variability associated to ATRX mutations and show the involvement of this gene in the ASD.

2.
Front Pharmacol ; 8: 249, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533751

RESUMO

Giant amphiphiles encompassing a hydrophilic ß-cyclodextrin (ßCD) component and a hydrophobic calix[4]arene (CA4) module undergo self-assembly in aqueous media to afford core-shell nanospheres or nanocapsules, depending on the nanoprecipitation protocol, with high docetaxel (DTX) loading capacity. The blank and loaded nanoparticles have been fully characterized by dynamic light scattering (DLS), ζ-potential measurements and cryo-transmission electron microscopy (cryo-TEM). The data are compatible with the distribution of the drug between the nanoparticle core and the shell, where it is probably anchored by inclusion of the DTX aromatic moieties in ßCD cavities. Indeed, the release kinetics profiles evidenced an initial fast release of the drug, which likely accounts for the fraction hosted on the surface, followed by a slow and sustained release rate, corresponding to diffusion of DTX in the core, which can be finely tuned by modification of the giant amphiphile chemical structure. The ability of the docetaxel-loaded nanoparticles to induce cellular death in different prostate (human LnCap and PC3) and glioblastoma (human U87 and rat C6) cells was also explored. Giant amphiphile-based DTX formulations surpassing or matching the antitumoral activity of the free DTX formulation were identified in all cases with no need to employ any organic co-solvent, thus overcoming the DTX water solubility problems. Moreover, the presence of the ßCD shell at the surface of the assemblies is intended to impart stealth properties against serum proteins while permitting nanoparticle surface decoration by supramolecular approaches, paving the way for a new generation of molecularly well-defined antitumoral drug delivery systems with improved specificity and efficiency. Altogether, the results provide a proof of concept of the suitability of the approach based on ßCD-CA4 giant amphiphiles to access DTX carriers with tunable properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...