Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 351: 119831, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134501

RESUMO

Geospatial fire behaviour and fire hazard simulators, fire effects models and smoke emission software commonly use standard fuel models in order to simplify data collection and the inclusion of complex fuel scenarios. These fuel models are often mapped using remotely sensed data. However, given the great complexity of fuelbeds, with properties that vary widely in both time and space, the use of these standard fuel models can greatly limit accurate fuel mapping. This affects fuel hazard assessment, fuel reduction treatment plans, fire management decision-making and evaluation of the environmental impact of wildfire. In this study, we developed unique customized fire behaviour fuel models for shrub and bracken communities, by using k-medoids clustering analysis based on both fuel structural characteristics and potential fire behaviour. We used an original database of 722 destructive sample plots in nine different shrub and bracken communities covering the entire distribution area in Galicia (NW Spain), one of the regions in Europe most affected by forest fires. Measurements of cover, height and fuel fractions loads differentiated by size and vegetative state (live or dead) were used to estimate the potential rate of fire spread with five different models including fireline intensity, heat per unit area and the flame length for each sampling site and considering extreme environmental conditions. The optimal number of clusters was established by combining practical knowledge about the shrubland communities under study and their associated fire behaviour, with maximization of the mean value of the silhouette variable and minimization of the within-cluster sum of squares. The structural characteristics of the medoids derived from the analysis were associated with each of the proposed customized fuel models. Finally, a simple dichotomous classification based only on shrub height was developed to enable construction of spatially explicit fuel model maps based on remotely sensed data. Thus, the methodology applied allows generation of a more realistic representation of fuel distribution in the landscape, based on fuel structure measurements of natural regional ecosystems rather than on the use of standard models. We believe that the proposed methodology is generally applicable to communities composed of other shrub and fern species in different biogeographical regions.


Assuntos
Incêndios , Incêndios Florestais , Ecossistema , Espanha , Europa (Continente)
2.
J Environ Manage ; 205: 9-17, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961436

RESUMO

Management of fuel to minimize crown fire hazard is a key challenge in Atlantic forests, particularly for pine species. However, a better understanding of effectiveness of silvicultural treatments, especially forest pruning, for hazard reduction is required. Here we evaluate pruning and thinning as two essential silvicultural treatments for timber pine forests. Data came from a network of permanent plots of young maritime pine stands in northwestern Spain. Vertical profiles of canopy bulk density were estimated for field data and simulated scenarios of pruning and thinning using individual tree biomass equations. Analyses of variance were conducted to establish the influence of each silvicultural treatment on canopy fuel variables. Results confirm the important role of both pruning and thinning in the mitigation of crown fire hazard, and that the effectiveness of the treatments is related to their intensity. Finally, models to directly estimate the vertical profile of canopy bulk density (CBD) were fitted using the Weibull probability density function and usual stand variables as regressors. The models developed include variables sensitive to pruning and thinning interventions and provide useful information to prevent extreme fire behavior through effective silviculture.


Assuntos
Incêndios , Florestas , Biomassa , Agricultura Florestal , Pinus , Espanha
3.
PLoS One ; 12(4): e0176114, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28448524

RESUMO

The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard.


Assuntos
Agricultura Florestal/métodos , Florestas , Modelos Teóricos , Biomassa , Conservação dos Recursos Naturais , Incêndios , Lasers , Pinus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...