Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37241682

RESUMO

Nowadays, there is no doubt about the high electrocatalytic efficiency that is obtained when using hybrid materials between carbonaceous nanomaterials and transition metal oxides. However, the method to prepare them may involve differences in the observed analytical responses, making it necessary to evaluate them for each new material. The goal of this work was to obtain for the first time Co2SnO4 (CSO)/RGO nanohybrids via in situ and ex situ methods and to evaluate their performance in the amperometric detection of hydrogen peroxide. The electroanalytical response was evaluated in NaOH pH 12 solution using detection potentials of -0.400 V or 0.300 V for the reduction or oxidation of H2O2. The results show that for CSO there were no differences between the nanohybrids either by oxidation or by reduction, unlike what we previously observed with cobalt titanate hybrids, in which the in situ nanohybrid clearly had the best performance. On the other hand, no influence in the study of interferents and more stable signals were obtained when the reduction mode was used. In conclusion, for detecting hydrogen peroxide, any of the nanohybrids studied, i.e., in situ or ex situ, are suitable to be used, and more efficiency is obtained using the reduction mode.

2.
Biosensors (Basel) ; 13(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36671884

RESUMO

An electrospinning method was used for the preparation of an in situ composite based on Ni2P nanoparticles and carbon fiber (FC). The material was tested for the first time against direct glucose oxidation reaction. The Ni2P nanoparticles were distributed homogeneously throughout the carbon fibers with a composition determined by thermogravimetric analysis (TGA) of 40 wt% Ni2P and 60 wt% carbon fiber without impurities in the sample. The electrochemical measurement results indicate that the GCE/FC/Ni2P in situ sensor exhibits excellent catalytic activity compared to the GCE/Ni2P and GCE/FC/Ni2P ex situ electrodes. The GCE/FC/Ni2P in situ sensor presents a sensitivity of 1050 µAmM-1cm-2 in the range of 5-208 µM and a detection limit of 0.25 µM. The sensor was applied for glucose detection in artificial saliva, with a low interference observed from normally coexisting electroactive species. In conclusion, our sensor represents a novel and analytical competitive alternative for the development of non-enzymatic glucose sensors in the future.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Fibra de Carbono , Níquel , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Glucose/análise , Nanopartículas/química , Eletrodos , Carbono/química
3.
Nanomaterials (Basel) ; 9(11)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766234

RESUMO

For the first time, the synthesis, characterization, and analytical application for hydrogen peroxide quantification of the hybrid materials of Co2TiO4 (CTO) and reduced graphene oxide (RGO) is reported, using in situ (CTO/RGO) and ex situ (CTO+RGO) preparations. This synthesis for obtaining nanostructured CTO is based on a one-step hydrothermal synthesis, with new precursors and low temperatures. The morphology, structure, and composition of the synthesized materials were examined using scanning electron microscopy, X-ray diffraction (XRD), neutron powder diffraction (NPD), and X-ray photoelectron spectroscopy (XPS). Rietveld refinements using neutron diffraction data were conducted to determine the cation distributions in CTO. Hybrid materials were also characterized by Brunauer-Emmett-Teller adsorption isotherms, Scanning Electron microscopy, and scanning electrochemical microscopy. From an analytical point of view, we evaluated the electrochemical reduction of hydrogen peroxide on glassy carbon electrodes modified with hybrid materials. The analytical detection of hydrogen peroxide using CTO/RGO showed 11 and 5 times greater sensitivity in the detection of hydrogen peroxide compared with that of pristine CTO and RGO, respectively, and a two-fold increase compared with that of the RGO+CTO modified electrode. These results demonstrate that there is a synergistic effect between CTO and RGO that is more significant when the hybrid is synthetized through in situ methodology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...