Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsia ; 64(7): 1842-1852, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37073101

RESUMO

OBJECTIVE: Posttraumatic epilepsy (PTE) develops in as many as one third of severe traumatic brain injury (TBI) patients, often years after injury. Analysis of early electroencephalographic (EEG) features, by both standardized visual interpretation (viEEG) and quantitative EEG (qEEG) analysis, may aid early identification of patients at high risk for PTE. METHODS: We performed a case-control study using a prospective database of severe TBI patients treated at a single center from 2011 to 2018. We identified patients who survived 2 years postinjury and matched patients with PTE to those without using age and admission Glasgow Coma Scale score. A neuropsychologist recorded outcomes at 1 year using the Expanded Glasgow Outcomes Scale (GOSE). All patients underwent continuous EEG for 3-5 days. A board-certified epileptologist, blinded to outcomes, described viEEG features using standardized descriptions. We extracted 14 qEEG features from an early 5-min epoch, described them using qualitative statistics, then developed two multivariable models to predict long-term risk of PTE (random forest and logistic regression). RESULTS: We identified 27 patients with and 35 without PTE. GOSE scores were similar at 1 year (p = .93). The median time to onset of PTE was 7.2 months posttrauma (interquartile range = 2.2-22.2 months). None of the viEEG features was different between the groups. On qEEG, the PTE cohort had higher spectral power in the delta frequencies, more power variance in the delta and theta frequencies, and higher peak envelope (all p < .01). Using random forest, combining qEEG and clinical features produced an area under the curve of .76. Using logistic regression, increases in the delta:theta power ratio (odds ratio [OR] = 1.3, p < .01) and peak envelope (OR = 1.1, p < .01) predicted risk for PTE. SIGNIFICANCE: In a cohort of severe TBI patients, acute phase EEG features may predict PTE. Predictive models, as applied to this study, may help identify patients at high risk for PTE, assist early clinical management, and guide patient selection for clinical trials.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Humanos , Estudos de Casos e Controles , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico , Epilepsia Pós-Traumática/diagnóstico , Epilepsia Pós-Traumática/etiologia , Eletroencefalografia , Escala de Coma de Glasgow
2.
Cureus ; 14(9): e29420, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36299960

RESUMO

Secondary acrocyanosis after spinal cord injury is extremely rare. We describe a case with secondary acrocyanosis in a complete T12 paraplegic patient. A 41-year-old man with complete T12 paraplegia after a gunshot wound to the thoracic spine 20 years prior presented with a four-month history of bilateral foot bluish discoloration precipitated when he sat with his legs down, improving rapidly after a few minutes of leg elevation. Changes in the skin color of the lower extremities were evaluated in the seated position for two hours. The skin color became darker, progressing to a bluish discoloration through the entire length of the legs. After two hours, the feet and most of the legs appeared deep purple. The color of the legs returned to their baseline three minutes later after the patient was placed supine in the bed. The diagnosis of secondary acrocyanosis due to the T12 spinal cord injury was established based on the physical examination and ancillary tests showing no peripheral ischemia. Other causes of secondary acrocyanosis were excluded during the work-up. This report presents the first case of a paraplegic patient with spinal cord injury presenting secondary acrocyanosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...