Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(24): 5823-5837, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38757473

RESUMO

Liposome-based technologies derived from lipids and polymers (e.g., PEGylated liposomes) have been recognized because of their applications in nanomedicine. However, since such systems represent myriad challenges and may promote immune responses, investigation of new biomaterials is mandatory. Here, we report on a biophysical investigation of liposomes decorated with bioconjugated copolymers in the presence (or absence) of amantadine (an antiviral medication). First, copolymers of poly(N,N-dimethylacrylamide-co-fluoresceinacrylate-co-acrylic acid-N-succinimide ester)-block-poly(N-isopropylacrylamide) (PDMA-b-PNIPAM) containing a fluorescence label were biofunctionalized with short peptides that resemble the sequence of the loops 220 and 130 of the binding receptor of the hemagglutinin (HA) protein of the influenza A virus. Then, the bioconjugated copolymers were self-assembled along with liposomes composed of 1,2 dimyristoyl-sn-glycero-3-phosphocholine, sphingomyelin, and cholesterol (MSC). These biohybrid systems, with and without amantadine, were systematically characterized using differential scanning calorimetry (DSC), dynamic light scattering (DLS), and cryogenic transmission electron microscopy (cryoTEM). Finally, the systems were tested in an in vitro study to evaluate cytotoxicity and direct immunofluorescence in Madin Darbin Canine Kidney (MDCK) cells. The biohybrid systems displayed long-term stability, thermo-responsiveness, hydrophilic-hydrophobic features, and fluorescence properties and were presumable endowed with cell targeting properties intrinsically integrated into the amino acid sequences of the utilized peptides, which indeed turn them into promising nanodevices for biomedical applications.


Assuntos
Amantadina , Lipossomos , Lipossomos/química , Amantadina/química , Polímeros/química , Animais , Antivirais/química , Antivirais/farmacologia , Células Madin Darby de Rim Canino , Cães
2.
Langmuir ; 35(50): 16528-16535, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31747518

RESUMO

We took advantage of the microflow hydrodynamics in the evaporation of sessile droplets to increase the height uniformity of thin lipid films for the subsequent electroformation of defect-free giant unilamellar vesicles (GUV). By serially casting progressively larger liposome suspension droplets on the same spot of an indium-tin-oxide (ITO) electrode, we managed to leverage the coffee ring effect (CRE) in the evaporation of each droplet to generate a smeared multilayer film of uniform thickness. This multidroplet technique of lipid film formation outperformed the traditional single-droplet deposition, improving the final quality of electroformed GUV samples. The proposed film formation technique constitutes a solvent-free method that results in a dramatic reduction (∼20×) in the appearance of undesirable structures like nonspherical (NSV), multilamellar (MLV), and multivesicular (MVV) vesicles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...