Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Risk Anal ; 36(11): 2031-2038, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26889937

RESUMO

There is a need to advance our ability to characterize the risk of inhalational anthrax following a low-dose exposure. The exposure scenario most often considered is a single exposure that occurs during an attack. However, long-term daily low-dose exposures also represent a realistic exposure scenario, such as what may be encountered by people occupying areas for longer periods. Given this, the objective of the current work was to model two rabbit inhalational anthrax dose-response data sets. One data set was from single exposures to aerosolized Bacillus anthracis Ames spores. The second data set exposed rabbits repeatedly to aerosols of B. anthracis Ames spores. For the multiple exposure data the cumulative dose (i.e., the sum of the individual daily doses) was used for the model. Lethality was the response for both. Modeling was performed using Benchmark Dose Software evaluating six models: logprobit, loglogistic, Weibull, exponential, gamma, and dichotomous-Hill. All models produced acceptable fits to either data set. The exponential model was identified as the best fitting model for both data sets. Statistical tests suggested there was no significant difference between the single exposure exponential model results and the multiple exposure exponential model results, which suggests the risk of disease is similar between the two data sets. The dose expected to cause 10% lethality was 15,600 inhaled spores and 18,200 inhaled spores for the single exposure and multiple exposure exponential dose-response model, respectively, and the 95% lower confidence intervals were 9,800 inhaled spores and 9,200 inhaled spores, respectively.


Assuntos
Antraz , Infecções Respiratórias , Medição de Risco/métodos , Aerossóis , Animais , Bacillus anthracis , Modelos Animais de Doenças , Exposição por Inalação , Modelos Estatísticos , Coelhos , Esporos Bacterianos
2.
Risk Anal ; 35(5): 811-27, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25545587

RESUMO

The application of the exponential model is extended by the inclusion of new nonhuman primate (NHP), rabbit, and guinea pig dose-lethality data for inhalation anthrax. Because deposition is a critical step in the initiation of inhalation anthrax, inhaled doses may not provide the most accurate cross-species comparison. For this reason, species-specific deposition factors were derived to translate inhaled dose to deposited dose. Four NHP, three rabbit, and two guinea pig data sets were utilized. Results from species-specific pooling analysis suggested all four NHP data sets could be pooled into a single NHP data set, which was also true for the rabbit and guinea pig data sets. The three species-specific pooled data sets could not be combined into a single generic mammalian data set. For inhaled dose, NHPs were the most sensitive (relative lowest LD50) species and rabbits the least. Improved inhaled LD50 s proposed for use in risk assessment are 50,600, 102,600, and 70,800 inhaled spores for NHP, rabbit, and guinea pig, respectively. Lung deposition factors were estimated for each species using published deposition data from Bacillus spore exposures, particle deposition studies, and computer modeling. Deposition was estimated at 22%, 9%, and 30% of the inhaled dose for NHP, rabbit, and guinea pig, respectively. When the inhaled dose was adjusted to reflect deposited dose, the rabbit animal model appears the most sensitive with the guinea pig the least sensitive species.


Assuntos
Bacillus anthracis/crescimento & desenvolvimento , Esporos Bacterianos , Administração por Inalação , Animais , Relação Dose-Resposta a Droga , Cobaias , Coelhos
3.
J Theor Biol ; 329: 20-31, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23567649

RESUMO

There is a need to advance our ability to conduct credible human risk assessments for inhalational anthrax associated with exposure to a low number of bacteria. Combining animal data with computational models of disease will be central in the low-dose and cross-species extrapolations required in achieving this goal. The objective of the current work was to apply and advance the competing risks (CR) computational model of inhalational anthrax where data was collected from NZW rabbits exposed to aerosols of Ames strain Bacillus anthracis. An initial aim was to parameterize the CR model using high-dose rabbit data and then conduct a low-dose extrapolation. The CR low-dose attack rate was then compared against known low-dose rabbit data as well as the low-dose curve obtained when the entire rabbit dose-response data set was fitted to an exponential dose-response (EDR) model. The CR model predictions demonstrated excellent agreement with actual low-dose rabbit data. We next used a modified CR model (MCR) to examine disease incubation period (the time to reach a fever >40 °C). The MCR model predicted a germination period of 14.5h following exposure to a low spore dose, which was confirmed by monitoring spore germination in the rabbit lung using PCR, and predicted a low-dose disease incubation period in the rabbit between 14.7 and 16.8 days. Overall, the CR and MCR model appeared to describe rabbit inhalational anthrax well. These results are discussed in the context of conducting laboratory studies in other relevant animal models, combining the CR/MCR model with other computation models of inhalational anthrax, and using the resulting information towards extrapolating a low-dose response prediction for man.


Assuntos
Antraz/microbiologia , Bacillus anthracis/patogenicidade , Período de Incubação de Doenças Infecciosas , Modelos Biológicos , Infecções Respiratórias/microbiologia , Animais , Antraz/prevenção & controle , Vacinas contra Antraz , Bacillus anthracis/fisiologia , Carga Bacteriana , Modelos Animais de Doenças , Pulmão/microbiologia , Masculino , Coelhos , Infecções Respiratórias/prevenção & controle , Medição de Risco/métodos , Esporos Bacterianos/patogenicidade , Esporos Bacterianos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...