Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 41(11): 2870-2882, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36040132

RESUMO

Mechanistic effect models are powerful tools for extrapolating from laboratory studies to field conditions. For bees, several good models are available that can simulate colony dynamics. Controlled and reliable experimental systems are also available to estimate the inherent toxicity of pesticides to individuals. However, there is currently no systematic and mechanistic way of linking the output of experimental ecotoxicological testing to bee models for bee risk assessment. We introduce an ecotoxicological module that mechanistically links exposure with the hazard profile of a pesticide for individual honeybees so that colony effects emerge. This mechanistic link allows the translation of results from standard laboratory studies to relevant parameters and processes for simulating bee colony dynamics. The module was integrated into the state-of-the-art honeybee model BEEHAVE. For the integration, BEEHAVE was adapted to mechanistically link the exposure and effects on different cohorts to colony dynamics. The BEEHAVEecotox model was tested against semifield (tunnel) studies, which were deemed the best study type to test whether BEEHAVEecotox predicted realistic effect sizes under controlled conditions. Two pesticides used as toxic standards were chosen for this validation to represent two different modes of action: acute mortality of foragers and chronic brood effects. The ecotoxicological module was able to predict effect sizes in the tunnel studies based on information from standard laboratory tests. In conclusion, the BEEHAVEecotox model is an excellent tool to be used for honeybee risk assessment, interpretation of field and semifield studies, and exploring the efficiency of different mitigation measures. The principles for exposure and effect modules are portable and could be used for any well-constructed honeybee model. Environ Toxicol Chem 2022;41:2870-2882. © 2022 Bayer AG & Sygenta, et al. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Praguicidas , Abelhas , Animais , Praguicidas/toxicidade , Modelos Teóricos , Medição de Risco
2.
Environ Sci Technol ; 51(12): 6908-6917, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28485584

RESUMO

Recently, the causes of honeybee colony losses have been intensely studied, showing that there are multiple stressors implicated in colony declines, one stressor being the exposure to pesticides. Measuring exposure of individual bees within a hive to pesticide is at least as difficult as assessing the potential exposure of foraging bees to pesticide. We present a model to explore how heterogeneity of pesticide distribution on a comb in the hive can be driven by worker behaviors. The model contains simplified behaviors to capture the extremes of possible heterogeneity of pesticide location/deposition within the hive to compare with exposure levels estimated by averaging values across the comb. When adults feed on nectar containing the average concentration of all pesticide brought into the hive on that particular day, it is likely representative of the worst-case exposure scenario. However, for larvae, clustering of pesticide in the comb can lead to higher exposure levels than taking an average concentration in some circumstances. The potential for extrapolating the model to risk assessment is discussed.


Assuntos
Abelhas , Praguicidas , Néctar de Plantas , Medição de Risco , Animais , Larva
3.
Environ Sci Technol ; 49(21): 12879-87, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26444386

RESUMO

To simulate effects of pesticides on different honeybee (Apis mellifera L.) life stages, we used the BEEHAVE model to explore how increased mortalities of larvae, in-hive workers, and foragers, as well as reduced egg-laying rate, could impact colony dynamics over multiple years. Stresses were applied for 30 days, both as multiples of the modeled control mortality and as set percentage daily mortalities to assess the sensitivity of the modeled colony both to small fluctuations in mortality and periods of low to very high daily mortality. These stresses simulate stylized exposure of the different life stages to nectar and pollen contaminated with pesticide for 30 days. Increasing adult bee mortality had a much greater impact on colony survival than mortality of bee larvae or reduction in egg laying rate. Importantly, the seasonal timing of the imposed mortality affected the magnitude of the impact at colony level. In line with the LD50, we propose a new index of "lethal imposed stress": the LIS50 which indicates the level of stress on individuals that results in 50% colony mortality. This (or any LISx) is a comparative index for exploring the effects of different stressors at colony level in model simulations. While colony failure is not an acceptable protection goal, this index could be used to inform the setting of future regulatory protection goals.


Assuntos
Abelhas/fisiologia , Praguicidas/toxicidade , Animais , Abelhas/efeitos dos fármacos , Larva/efeitos dos fármacos , Modelos Biológicos , Néctar de Plantas , Pólen , Estresse Fisiológico , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...