Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 9(1): 100, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844494

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is one of the top infectious killers in the world. The only licensed vaccine against TB, Bacille Calmette-Guérin (BCG), provides variable protection against pulmonary TB, especially in adults. Hence, novel TB vaccine approaches are urgently needed. Both Th1 and Th17 responses are necessary for protection against TB, yet effective adjuvants and vaccine delivery systems for inducing robust Th1 and Th17 immunity are lacking. Herein we describe a synthetic Mincle agonist, UM-1098, and a silica nanoparticle delivery system that drives Th1/Th17 responses to Mtb antigens. Stimulation of human peripheral blood mononuclear cells (hPBMCs) with UM-1098 induced high levels of Th17 polarizing cytokines IL-6, IL-1ß, IL-23 as well as IL-12p70, IL-4 and TNF-α in vitro. PBMCs from both C57BL/6 and BALB/c mice responded with a similar cytokine pattern in vitro and in vivo. Importantly, intramuscular (I.M.) vaccination with UM-1098-adjuvanted TB antigen M72 resulted in significantly higher antigen-specific IFN-γ and IL-17A levels in C57BL/6 wt mice than Mincle KO mice. Vaccination of C57BL/6 wt mice with immunodominant Mtb antigens ESAT6/Ag85B or M72 resulted in predominantly Th1 and Th17 responses and induced antigen-specific serum antibodies. Notably, in a virulent Mtb challenge model, vaccination with UM-1098 adjuvanted ESAT6/Ag85B or M72 significantly reduced lung bacterial burden when compared with unvaccinated mice and protection occurred in the absence of pulmonary inflammation. These data demonstrate that the synthetic Mincle agonist UM-1098 induces strong Th1 and Th17 immunity after vaccination with Mtb antigens and provides protection against Mtb infection in mice.

2.
Front Immunol ; 14: 1122808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875121

RESUMO

Streptococcus suis (S. suis) is an important porcine pathogen, causing severe disease like meningitis and septicemia primarily in piglets. Previous work showed that the IgM-degrading enzyme of S. suis (Ide Ssuis ) specifically cleaves soluble porcine IgM and is involved in complement evasion. The objective of this study was to investigate Ide Ssuis cleavage of the IgM B cell receptor and subsequent changes in B cell receptor mediated signaling. Flow cytometry analysis revealed cleavage of the IgM B cell receptor by recombinant (r) Ide Ssuis _homologue as well as Ide Ssuis derived from culture supernatants of S. suis serotype 2 on porcine PBMCs and mandibular lymph node cells. Point-mutated rIde Ssuis _homologue_C195S did not cleave the IgM B cell receptor. After receptor cleavage by rIde Ssuis _homologue, it took at least 20 h for mandibular lymph node cells to restore the IgM B cell receptor to levels comparable to cells previously treated with rIde Ssuis _homologue_C195S. B cell receptor mediated signaling after specific stimulation via the F(ab')2 portion was significantly inhibited by rIde Ssuis _homologue receptor cleavage in IgM+ B cells, but not in IgG+ B cells. Within IgM+ cells, CD21+ B2 cells and CD21- B1-like cells were equally impaired in their signaling capacity upon rIde Ssuis _homologue B cell receptor cleavage. In comparison, intracellular B cell receptor independent stimulation with tyrosine phosphatase inhibitor pervanadate increased signaling in all investigated B cell types. In conclusion, this study demonstrates Ide Ssuis cleavage efficacy on the IgM B cell receptor and its consequences for B cell signaling.


Assuntos
Streptococcus suis , Animais , Suínos , Linfócitos B , Transdução de Sinais , Receptores de Antígenos de Linfócitos B , Imunoglobulina M
3.
Microbiol Spectr ; 10(2): e0271621, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35389241

RESUMO

Staphylococcus aureus remains a leading cause of skin and soft tissue infections (SSTIs) globally. In the United States, many of these infections are caused by isolates classified as USA300. Our understanding of the success of USA300 as a human pathogen is due in part to data obtained from animal infection models, including rabbit SSTI models. These animal models have been used to study S. aureus virulence and pathogenesis and to gain an enhanced understanding of the host response to infection. Although significant knowledge has been gained, the need to use a relatively high inoculum of USA300 (1 × 108 to 5 × 108 CFU) is a caveat of these infection models. As a step toward addressing this issue, we created mutations in USA300 that mimic those found in S. aureus strains with naturally occurring rabbit tropism-namely, single nucleotide polymorphisms in dltB and/or deletion of rot. We then developed a rabbit SSTI model that utilizes an inoculum of 106 USA300 CFU to cause reproducible disease and tested whether primary SSTI protects rabbits against severe reinfection caused by the same strain. Although there was modest protection against severe reinfection, primary infection and reinfection with rabbit-tropic USA300 strains failed to increase the overall level of circulating anti-S. aureus antibodies significantly. These findings provide additional insight into the host response to S. aureus. More work is needed to further develop a low-inoculum infection model that can be used to better test the potential of new therapeutics or vaccine target antigens. IMPORTANCE Animal models of S. aureus infection are important for evaluating bacterial pathogenesis and host immune responses. These animal infection models are often used as an initial step in the testing of vaccine antigens and new therapeutics. The extent to which animal models of S. aureus infection approximate human infections remains a significant consideration for translation of results to human clinical trials. Although significant progress has been made with rabbit models of S. aureus infection, one concern is the high inoculum needed to cause reproducible disease. Here, we generated USA300 strains that have tropism for rabbits and developed a rabbit SSTI model that uses fewer CFU than previous models.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções dos Tecidos Moles , Infecções Estafilocócicas , Infecções Cutâneas Estafilocócicas , Vacinas , Animais , Staphylococcus aureus Resistente à Meticilina/genética , Coelhos , Reinfecção , Infecções Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus aureus , Estados Unidos
4.
Microbiol Spectr ; 9(2): e0088821, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34704790

RESUMO

Staphylococcus aureus is an important human pathogen that can cause a variety of diseases ranging from mild superficial skin infections to life-threatening conditions like necrotizing pneumonia, endocarditis, and septicemia. Polymorphonuclear leukocytes (PMNs; neutrophils in particular herein) are essential for host defense against S. aureus infections, and the microbe is phagocytosed readily. Most ingested bacteria are killed, but some S. aureus strains-such as the epidemic USA300 strain-have an enhanced ability to cause PMN lysis after phagocytosis. Although progress has been made, the mechanism for lysis after phagocytosis of S. aureus remains incompletely determined. Here, we tested the hypothesis that disruption of phagosome integrity and escape of S. aureus from the PMN phagosome into the cytoplasm precedes PMN lysis. We used USA300 wild-type and isogenic deletion strains to evaluate and/or verify the role of selected S. aureus molecules in this cytolytic process. Compared to the wild-type USA300 strain, Δagr, Δhla, ΔlukGH, and Δpsm strains each caused significantly less lysis of human PMNs 3 h and/or 6 h after phagocytosis, consistent with previous studies. Most notably, confocal microscopy coupled with selective permeabilization assays demonstrated that phagosome membrane integrity is largely maintained prior to PMN lysis after S. aureus phagocytosis. We conclude that PMN lysis does not require escape of S. aureus from the phagosome to the cytoplasm and that these are independent phenomena. The findings are consistent with the ability of S. aureus (via selected molecules) to trigger lysis of human PMNs by an undetermined signaling mechanism. IMPORTANCE S. aureus strain USA300 has the ability to cause rapid lysis of human neutrophils after phagocytosis. Although this phenomenon likely contributes to the success of USA300 as a human pathogen, our knowledge of the mechanism remains incomplete. Here, we used a selective permeabilization assay coupled with confocal microscopy to demonstrate that USA300 is contained within human neutrophil phagosomes until the point of host cell lysis. Thus, consistent with a process in macrophages, S. aureus fails to escape into the neutrophil cytoplasm prior to cytolysis.


Assuntos
Morte Celular/fisiologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Fagossomos/microbiologia , Staphylococcus aureus/imunologia , Humanos , Fagocitose/imunologia , Transdução de Sinais/imunologia , Infecções Estafilocócicas/imunologia
5.
Antioxid Redox Signal ; 34(6): 452-470, 2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32460514

RESUMO

Significance:Staphylococcus aureus is among the leading causes of bacterial infections worldwide. The high burden of S. aureus among human and animal hosts, which includes asymptomatic carriage and infection, is coupled with a notorious ability of the microbe to become resistant to antibiotics. Notably, S. aureus has the ability to produce molecules that promote evasion of host defense, including the ability to avoid killing by neutrophils. Recent Advances: Significant progress has been made to better understand S. aureus-host interactions. These discoveries include elucidation of the role played by numerous S. aureus virulence molecules during infection. Based on putative functions, a number of these virulence molecules, including S. aureus alpha-hemolysin and protein A, have been identified as therapeutic targets. Although it has not been possible to develop a vaccine that can prevent S. aureus infections, monoclonal antibodies specific for S. aureus virulence molecules have the potential to moderate the severity of disease. Critical Issues: Therapeutic options for treatment of methicillin-resistant S. aureus (MRSA) are limited, and the microbe typically develops resistance to new antibiotics. New prophylactics and/or therapeutics are needed. Future Directions: Research that promotes an enhanced understanding of S. aureus-host interaction is an important step toward developing new therapeutic approaches directed to moderate disease severity and facilitate treatment of infection. This research effort includes studies that enhance our view of the interaction of S. aureus with human neutrophils. Antioxid. Redox Signal. 34, 452-470.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Humanos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Neutrófilos/metabolismo
6.
Wiley Interdiscip Rev Syst Biol Med ; 12(1): e1458, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31218817

RESUMO

The innate immune system is the first line of host defense against invading microorganisms. Polymorphonuclear leukocytes (PMNs or neutrophils) are the most abundant leukocyte in humans and essential to the innate immune response against invading pathogens. Compared to the acquired immune response, which requires time to develop and is dependent on previous interaction with specific microbes, the ability of neutrophils to kill microorganisms is immediate, nonspecific, and not dependent on previous exposure to microorganisms. Historically, studies of PMN-pathogen interaction focused on the events leading to killing of microorganisms, such as recruitment/chemotaxis, transmigration, phagocytosis, and activation, whereas postphagocytosis sequelae were infrequently considered. In addition, it was widely accepted that human neutrophils possessed limited capacity for new gene transcription and thus, relatively little biosynthetic capacity. This notion has changed dramatically within the past 20 years. Further, there is now more effort directed to understand the events occurring in PMNs after killing of microbes. Herein, we give an updated review of the systems biology-level approaches that have been used to gain an enhanced view of the role of neutrophils during host-pathogen interaction and neutrophil-mediated diseases. We anticipate that these and future systems-level studies will continue to provide information important for understanding, treatment, and control of diseases caused by pathogenic microorganisms. This article is categorized under: Physiology > Organismal Responses to Environment Physiology > Mammalian Physiology in Health and Disease Biological Mechanisms > Cell Fates.


Assuntos
Imunidade Inata , Neutrófilos , Biologia de Sistemas/métodos , Apoptose/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/imunologia , Imunidade Inata/fisiologia , Inflamação/imunologia , Modelos Imunológicos , Neutrófilos/citologia , Neutrófilos/imunologia , Neutrófilos/fisiologia , Fagocitose/imunologia , Transcriptoma/genética , Transcriptoma/imunologia
7.
Infect Immun ; 88(3)2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31843967

RESUMO

Bacteremia is a hallmark of invasive Streptococcus suis infections of pigs, often leading to septicemia, meningitis, or arthritis. An important defense mechanism of neutrophils is the generation of reactive oxygen species (ROS). In this study, we report high levels of ROS production by blood granulocytes after intravenous infection of a pig with high levels of S. suis-specific antibodies and comparatively low levels of bacteremia. This prompted us to investigate the working hypothesis that the immunoglobulin-mediated oxidative burst contributes to the killing of S. suis in porcine blood. Several S. suis strains representing serotypes 2, 7, and 9 proved to be highly susceptible to the oxidative burst intermediate hydrogen peroxide, already at concentrations of 0.001%. The induction of ROS in granulocytes in ex vivo-infected reconstituted blood showed an association with pathogen-specific antibody levels. Importantly, inhibition of ROS production by the NADPH oxidase inhibitor apocynin led to significantly increased bacterial survival in the presence of high specific antibody levels. The oxidative burst rate of granulocytes partially depended on complement activation, as shown by specific inhibition. Furthermore, treatment of IgG-depleted serum with a specific IgM protease or heat to inactivate complement resulted in >3-fold decreased oxidative burst activity and increased bacterial survival in reconstituted porcine blood in accordance with an IgM-complement-oxidative burst axis. In conclusion, this study highlights an important control mechanism of S. suis bacteremia in the natural host: the induction of ROS in blood granulocytes via specific immunoglobulins such as IgM.


Assuntos
Granulócitos/fisiologia , Explosão Respiratória/fisiologia , Streptococcus suis/imunologia , Doenças dos Suínos/microbiologia , Acetofenonas/farmacologia , Animais , Inibidores Enzimáticos/farmacologia , Granulócitos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Streptococcus suis/efeitos dos fármacos , Suínos , Doenças dos Suínos/imunologia
8.
Virulence ; 9(1): 1314-1337, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30001174

RESUMO

Streptococcus suis (S. suis) causes meningitis, arthritis and endocarditis in piglets. The aim of this study was to characterize the IgM degrading enzyme of S. suis (IdeSsuis) and to investigate the role of IgM cleavage in evasion of the classical complement pathway and pathogenesis. Targeted mutagenesis of a cysteine in the putative active center of IdeSsuis abrogated IgM cleavage completely. In contrast to wt rIdeSsuis, point mutated rIdeSsuis_C195S did not reduce complement-mediated hemolysis indicating that complement inhibition by rIdeSsuis depends on the IgM proteolytic activity. A S. suis mutant expressing IdeSsuis_C195S did not reduce IgM labeling, whereas the wt and complemented mutant showed less IgM F(ab')2 and IgM Fc antigen on the surface. IgM cleavage increased survival of S. suis in porcine blood ex vivo and mediated complement evasion as demonstrated by blood survival and C3 deposition assays including the comparative addition of rIdeSsuis and rIdeSsuis_C195S. However, experimental infection of piglets disclosed no significant differences in virulence between S. suis wt and isogenic mutants without IgM cleavage activity. This work revealed for the first time in vivo labeling of S. suis with IgM in the cerebrospinal fluid of piglets with meningitis. In conclusion, this study classifies IdeSsuis as a cysteine protease and emphasizes the role of IgM cleavage for bacterial survival in porcine blood and complement evasion though IgM cleavage is not crucial for the pathogenesis of serotype 2 meningitis.


Assuntos
Proteínas do Sistema Complemento/imunologia , Cisteína Proteases/imunologia , Evasão da Resposta Imune , Imunoglobulina M/metabolismo , Streptococcus suis/enzimologia , Streptococcus suis/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Sítios de Ligação de Anticorpos , Cisteína Proteases/genética , Interações Hospedeiro-Patógeno/imunologia , Imunoglobulina M/imunologia , Meningite/líquido cefalorraquidiano , Meningite/microbiologia , Mutagênese , Proteólise , Sorogrupo , Infecções Estreptocócicas/sangue , Infecções Estreptocócicas/imunologia , Suínos , Doenças dos Suínos/microbiologia
9.
Vet Res ; 49(1): 48, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29903042

RESUMO

Streptococcus (S.) suis is an important porcine pathogen causing meningitis, arthritis and septicemia. As cps7 emerged recently in Germany in association with severe herd problems, the objective of this study was to characterize the geno- and phenotype of invasive cps7 strains. Twenty cps7 strains were isolated from diseased pigs from different farms with S. suis herd problems due to meningitis and other pathologies. Eighteen of the cps7 isolates belonged to sequence type (ST) 29. Most of these cps7 strains secreted a short MRP variant in agreement with a premature stop codon. Expression of Ide Ssuis , an IgM specific protease, was variable in four further investigated cps7 ST29 isolates. Bactericidal assays revealed very high survival factors of these four cps7 ST29 strains in the blood of weaning piglets. In growing piglets, the increase of specific IgM led to efficient killing of cps7 ST29 as shown by addition of the IgM protease Ide Ssuis . Finally, virulence of a cps7 ST29 strain was confirmed in experimental infection of weaning piglets leading to meningitis and arthritis. In conclusion, this study characterizes cps7 ST29 as a distinct S. suis pathotype showing high survival factors in porcine blood after weaning, but IgM-mediated killing in the blood of older growing piglets. This underlines the relevance of IgM as an important host defense mechanism against S. suis.


Assuntos
Imunidade Adaptativa/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus suis/fisiologia , Streptococcus suis/patogenicidade , Doenças dos Suínos/imunologia , Animais , Anticorpos Antibacterianos/sangue , Áustria , Alemanha , Imunoglobulina M/sangue , Sorogrupo , Infecções Estreptocócicas/sangue , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus suis/genética , Suínos , Doenças dos Suínos/sangue , Doenças dos Suínos/microbiologia , Virulência , Desmame
10.
Vet Microbiol ; 201: 42-48, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28284621

RESUMO

Streptococcus (S.) phocae subsp. phocae causes bronchopneumonia and septicemia in a variety of marine mammals. Especially in harbor seals infected with phocine distemper virus it plays an important role as an opportunistic pathogen. This study was initiated by the detection of IgG cleavage products in Western blot analysis after incubation of bacterial supernatant with harbor seal serum. Hence, the objectives of this study were the identification and characterization of a secreted IgG cleaving protease in S. phocae subsp. phocae isolated from marine mammals. To further identify the responsible factor of IgG cleavage a protease inhibitor profile was generated. Inhibition of the IgG cleaving activity by iodoacetamide and Z-LVG-CHN2 indicated that a cysteine protease is involved. Moreover, an anti-IdeS antibody directed against the IgG endopeptidase IdeS of S. pyogenes showed cross reactivity with the putative IgG protease of S. phocae subsp. phocae. The IgG cleaving factor of S. phocae subsp. phocae was identified through an inverse PCR approach and designated IdeP (Immunoglobulin G degrading enzyme of S. phocae subsp. phocae) in analogy to the cysteine protease IdeS. Notably, recombinant (r) IdeP is a host and substrate specific protease as it cleaves IgG from grey and harbor seals but not IgG from harbor porpoises or non-marine mammals. The identification of IdeP represents the first description of a protein in S. phocae subsp. phocae involved in immune evasion. Furthermore, the fact that IdeP cleaves solely IgG of certain marine mammals reflects functional adaption of S. phocae subsp. phocae to grey and harbor seals as its main hosts.


Assuntos
Endopeptidases/metabolismo , Imunoglobulina G/metabolismo , Phoca/microbiologia , Inibidores de Proteases/farmacologia , Infecções Estreptocócicas/veterinária , Streptococcus pyogenes/enzimologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Reações Cruzadas , Endopeptidases/genética , Especificidade de Hospedeiro , Evasão da Resposta Imune , Iodoacetamida/farmacologia , Oligopeptídeos/farmacologia , Proteínas Recombinantes , Análise de Sequência de DNA/veterinária , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...