Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Surg ; 9: 881076, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574524

RESUMO

Background: To compare the application of the emerging 3D printing technology and 3D-CT in segmentectomy. And to explore the advantages of 3D printing technology in thoracoscopic segmentectomy. Methods: We collected the clinical data of 118 patients undergoing thoracoscopic segmentectomy from January 2019 to April 2021 at the Thoracic Surgery Department, the Dianjiang People's Hospital of Chongqing and Southwest Hospital. Among them, 61 patients were in the 3D printing group and 57 patients were in the 3D-CT group respectively. The perioperative data of these two groups of patients were analyzed respectively. Results: There were no significant differences between the two groups in age, gender, tumor diameter, pathology, the preoperative complications of diabetes and heart disease. However, the patients with the complications of hypertension in the 3D printing group are significantly more than the 3D-CT group (P = 0.003). Compared with the 3D-CT group, patients in the 3D printing group had significantly shorter operation time (162.7 ± 47.0 vs. 190.3 ± 56.9 min, P = 0.006), less intraoperative fluid input (1,158.5 ± 290.2 vs. 1,433.2 ± 653.3, P = 0.013), and less total intraoperative fluid output, including intraoperative blood loss, urine excretion, and other fluid loss. In addition, there were no statistically significant differences in intraoperative blood loss, 24 h pleural fluid volume, 48 h pleural fluid volume, postoperative chest tube duration, postoperative hospital stay and complications between the two groups of patients (P > 0.05). Conclusions: In thoracoscopic segmentectomy, the application of 3D printing technology shortens the operation time, reduces intraoperative fluid input and output, guides the operation more safely and effectively, and has better clinical application value.

2.
Agric Water Manag ; 173: 84-90, 2016 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-27489395

RESUMO

Farm crop growing and high efficiency water resource utilizing are directly influenced by global warming, and a new challenge will be given to food and water resource security. A simulation experiment by farm warming with infrared ray radiator was carried out, and the result showed photosynthesis of broad bean was significantly faster than transpiration during the seedling stage, ramifying stage, budding stage, blooming stage and podding stage when the temperate was increased by 0.5-1.5 °C. But broad bean transpiration was faster than photosynthesis during the budding stage, blooming stage and podding stage when the temperature was increased by 1.5 °C above. The number of grain per hill and hundred-grain weight were significantly increased when the temperature was increased by 0.5-1.0 °C. But they significantly dropped and finally the yield decreased when the temperature was increased by 1.0 °C above. The broad bean yield decreased by 39.2-88.4% when the temperature was increased by 1.5-2.0 °C. The broad bean water use efficiency increased and then decreased with temperature rising. The water use efficiency increased when the temperature was increased by 1.0 °C below, and it quickly decreased when the temperature was increased by 1.0 °C above. In all, global warming in the future will significantly influence the growth, yield and water use efficiency of bean cultures in China's semiarid regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...