Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22272960

RESUMO

Patients hospitalized with COVID-19 are at significant risk for superimposed bacterial pneumonia. However, diagnosing superinfection is challenging due to its clinical resemblance to severe COVID-19. We therefore evaluated whether the immune biomarker, procalcitonin, could facilitate the diagnosis of bacterial superinfection. To do so, we identified 185 patients with severe COVID-19 who underwent lower respiratory culture; 85 had superinfection. Receiver operating characteristic curve analysis showed that procalcitonin at the time of culture was incapable of distinguishing patients with bacterial infection (AUC, 0.52). We conclude that static measurement of procalcitonin does not aid in the diagnosis of superinfection in severe COVID-19.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20188813

RESUMO

BackgroundHealthcare workers (HCW) treating COVID-19 patients are at high risk for infection and may also spread infection through their contact with vulnerable patients. Smell loss has been associated with SARS-CoV-2 infection, but it is unknown whether monitoring for smell loss can be used to identify asymptomatic infection among high risk individuals, like HCW. MethodsWe performed a prospective cohort study, tracking 473 HCW across three months to determine if smell loss could predict SARS-CoV-2 infection in this high-risk group. HCW subjects completed a longitudinal, novel behavioral at-home assessment of smell function with household items, as well as detailed symptom surveys that included a parosmia screening questionnaire, and RT-qPCR testing to identify SARSCoV-2 infection. ResultsSARS-CoV-2 was identified in 17 (3.6%) of 473 HCW. Among the 17 infected HCW, 53% reported smell loss, and were more likely to report smell loss than COVID-negative HCW on both the at-home assessment and the screening questionnaire (P < .01). 67% reported smell loss prior to having a positive SARS-CoV-2 test, and smell loss was reported a median of two days before testing positive. Neurological symptoms were reported more frequently among COVID-positive HCW who reported smell loss (P < .01). ConclusionsIn this prospective study of HCW, self-reported changes in smell using two different measures were predictive of COVID-19 infection. Smell loss frequently preceded a positive test and was associated with neurological symptoms.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20183830

RESUMO

Expanding testing capabilities is integral to managing the further spread of SARS-CoV-2 and developing reopening strategies, particularly in regards to identifying and isolating asymptomatic and pre-symptomatic individuals. Central to meeting testing demands are specimens that can be easily and reliably collected and laboratory capacity to rapidly ramp up to scale. We and others have demonstrated that high and consistent levels of SARS-CoV-2 RNA can be detected in saliva from COVID-19 inpatients, outpatients, and asymptomatic individuals. As saliva collection is non-invasive, extending this strategy to test pooled saliva samples from multiple individuals could thus provide a simple method to expand testing capacity. However, hesitation towards pooled sample testing arises due to the dilution of positive samples, potentially shifting weakly positive samples below the detection limit for SARS-CoV-2 and thereby decreasing the sensitivity. Here, we investigated the potential of pooling saliva samples by 5, 10, and 20 samples prior to RNA extraction and RT-qPCR detection of SARS-CoV-2. Based on samples tested, we conservatively estimated a reduction of 7.41%, 11.11%, and 14.81% sensitivity, for each of the pool sizes, respectively. Using these estimates we modeled anticipated changes in RT-qPCR cycle threshold to show the practical impact of pooling on results of SARS-CoV-2 testing. In tested populations with greater than 3% prevalence, testing samples in pools of 5 requires the least overall number of tests. Below 1% however, pools of 10 or 20 are more beneficial and likely more supportive of ongoing surveillance strategies.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20165233

RESUMO

Most currently approved strategies for the collection of saliva for COVID-19 diagnostics require specialized tubes containing buffers promoted for the stabilization of SARS-CoV-2 RNA and virus inactivation. Yet many of these are expensive, in limited supply, and not necessarily validated specifically for viral RNA. While saliva is a promising sample type as it can be reliably self-collected for the sensitive detection of SARS-CoV-2, the expense and availability of these collection tubes are prohibitive to mass testing efforts. Therefore, we investigated the stability of SARS-CoV-2 RNA and infectious virus detection from saliva without supplementation. We tested RNA stability over extended periods of time (2-25 days) and at temperatures representing at-home storage and elevated temperatures which might be experienced when cold chain transport may be unavailable. We found SARS-CoV-2 RNA in saliva from infected individuals is stable at 4{degrees}C, room temperature ([~]19{degrees}C), and 30{degrees}C for prolonged periods and found limited evidence for viral replication in stored saliva samples. This work demonstrates that expensive saliva collection options involving RNA stabilization and virus inactivation buffers are not always needed, permitting the use of cheaper collection options. Affordable testing methods are urgently needed to meet current testing demands and for continued surveillance in reopening strategies.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20167791

RESUMO

Current bottlenecks for improving accessibility and scalability of SARS-CoV-2 testing include diagnostic assay costs, complexity, and supply chain shortages. To resolve these issues, we developed SalivaDirect, which received Emergency Use Authorization (EUA) from the U.S. Food and Drug Administration on August 15th, 2020. The critical component of our approach is to use saliva instead of respiratory swabs, which enables non-invasive frequent sampling and reduces the need for trained healthcare professionals during collection. Furthermore, we simplified our diagnostic test by (1) not requiring nucleic acid preservatives at sample collection, (2) replacing nucleic acid extraction with a simple proteinase K and heat treatment step, and (3) testing specimens with a dualplex quantitative reverse transcription PCR (RT-qPCR) assay. We validated SalivaDirect with reagents and instruments from multiple vendors to minimize the risk for supply chain issues. Regardless of our tested combination of reagents and instruments from different vendors, we found that SalivaDirect is highly sensitive with a limit of detection of 6-12 SARS-CoV-2 copies/L. When comparing SalivaDirect to paired nasopharyngeal swabs using the authorized ThermoFisher Scientific TaqPath COVID-19 combo kit, we found high agreement in testing outcomes (>94%). In partnership with the National Basketball Association (NBA) and Players Association, we conducted a large-scale (n = 3,779) SalivaDirect usability study and comparison to standard nasal/oral tests for asymptomatic and presymptomatic SARS-CoV-2 detection. From this cohort of healthy NBA players, staff, and contractors, we found that 99.7% of samples were valid using our saliva collection techniques and a 89.5% positive and >99.9% negative test agreement to swabs, demonstrating that saliva is a valid and noninvasive alternative to swabs for large-scale SARS-CoV-2 testing. SalivaDirect is a flexible and inexpensive ($1.21-$4.39/sample in reagent costs) option to help improve SARS-CoV-2 testing capacity. Register to become a designated laboratory to use SalivaDirect under our FDA EUA on our website: publichealth.yale.edu/salivadirect/.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20067835

RESUMO

Rapid and accurate SARS-CoV-2 diagnostic testing is essential for controlling the ongoing COVID-19 pandemic. The current gold standard for COVID-19 diagnosis is real-time RT-PCR detection of SARS-CoV-2 from nasopharyngeal swabs. Low sensitivity, exposure risks to healthcare workers, and global shortages of swabs and personal protective equipment, however, necessitate the validation of new diagnostic approaches. Saliva is a promising candidate for SARS-CoV-2 diagnostics because (1) collection is minimally invasive and can reliably be self-administered and (2) saliva has exhibited comparable sensitivity to nasopharyngeal swabs in detection of other respiratory pathogens, including endemic human coronaviruses, in previous studies. To validate the use of saliva for SARS-CoV-2 detection, we tested nasopharyngeal and saliva samples from confirmed COVID-19 patients and self-collected samples from healthcare workers on COVID-19 wards. When we compared SARS-CoV-2 detection from patient-matched nasopharyngeal and saliva samples, we found that saliva yielded greater detection sensitivity and consistency throughout the course of infection. Furthermore, we report less variability in self-sample collection of saliva. Taken together, our findings demonstrate that saliva is a viable and more sensitive alternative to nasopharyngeal swabs and could enable at-home self-administered sample collection for accurate large-scale SARS-CoV-2 testing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...