Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB Bioadv ; 4(4): 235-253, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35415459

RESUMO

Ovarian cancer is the deadliest malignant disease in women. Protein Kinase C delta (PRKCD; PKCδ) is serine/threonine kinase extensively linked to various cancers. In humans, PKCδ is alternatively spliced to PKCδI and PKCδVIII. However, the specific function of PKCδ splice variants in ovarian cancer has not been elucidated yet. Hence, we evaluated their expression in human ovarian cancer cell lines (OCC): SKOV3 and TOV112D, along with the normal T80 ovarian cells. Our results demonstrate a marked increase in PKCδVIII in OCC compared to normal ovarian cells. Therefore, we elucidated the role of PKCδVIII and the underlying mechanism of its expression in OCC. Using overexpression and knockdown studies, we demonstrate that PKCδVIII increases cellular survival and migration in OCC. Further, overexpression of PKCδVIII in T80 cells resulted in increased expression of Bcl2 and knockdown of PKCδVIII in OCC decreased Bcl2 expression. Using co-immunoprecipitations and immunocytochemistry, we demonstrate nuclear localization of PKCδVIII in OCC and further show increased association of PKCδVIII with Bcl2 and Bcl-xL in OCC. Using PKCδ splicing minigene, mutagenesis, siRNA and antisense oligonucleotides, we demonstrate that increased levels of alternatively spliced PKCδVIII in OCC is regulated by splice factor SRSF2. Finally, we verified that PKCδVIII levels are elevated in samples of human ovarian cancer tissue. The data presented here demonstrate that the alternatively spliced, signaling kinase PKCδVIII is a viable target to develop therapeutics to combat progression of ovarian cancer.

2.
Mol Cell Biol ; 41(3): e0033820, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33288642

RESUMO

Lithium chloride (LiCl) is commonly used in treatment of mood disorders; however, its usage leads to weight gain, which promotes metabolic disorders. Protein kinase C delta (PKCδ), a serine/threonine kinase, is alternatively spliced to PKCδI and PKCδII in 3T3-L1 cells. We previously demonstrated that PKCδI is the predominantly expressed isoform in 3T3-L1 preadipocytes. Here, we demonstrate that LiCl treatment decreases PKCδI levels, increases formation of lipid droplets, and increases oxidative stress. Hence, we investigated the molecular mechanisms underlying the regulation of PKCδI alternative splicing by LiCl. We previously demonstrated that the splice factor SFRS10 is essential for PKCδI splicing. Our results demonstrate that glycogen synthase kinase 3 beta (GSK3ß) phosphorylates SFRS10, and SFRS10 is in a complex with long noncoding RNA NEAT1 to promote PKCδI splicing. Using PKCδ splicing minigene and RNA immunoprecipitation assays, our results demonstrate that upon LiCl treatment, NEAT1 levels are reduced, GSK3ß activity is inhibited, and SFRS10 phosphorylation is decreased, which leads to decreased expression of PKCδI. Integration of the GSK3ß signaling pathway with the ribonucleoprotein complex of long noncoding RNA (lncRNA) NEAT1 and SFRS10 enables fine-tuning of PKCδI expression during adipogenesis. Knowledge of the molecular pathways impacted by LiCl provides an understanding of the ascent of obesity as a comorbidity in disease management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...