Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(33): 22928-22935, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37520100

RESUMO

Poly(ester amide)s (PEAs) bearing various side chains were synthesized by post-polymerization modification of PA-1, a vinylidene containing PEA. The thiols 1-dodecanethiol (1A-SH), 2-phenylethanethiol (1B-SH), 2-mercaptoethanol (1C-SH), thioglycolic acid (1D-SH), furfuryl mercaptan (1E-SH) and sodium-2-mercaptoethanesulfonate (1F-SH) were reacted with PA-1 to form PEAs PA-1A through PA-1F respectively. PEAs containing non-polar thiol side chains (PA-1A, PA-1B, PA-1E), showed little change in solubility compared to PA-1, while PEAs with more polar side chains improved solubility in more polar solvents. PA-1F, functionalized with sodium-2-mercaptoethanesulfonate, became water-soluble. The introduction of pendant functional groups impacted the thermal behaviors of PEAs in a wide range. The PEAs were thermally stable up to 368 °C, with glass transition temperatures (Tg) measured between 117 to 152 °C. Moreover, to demonstrate the versatility of the PEAs, thermal reprocessable networks and polyurethanes were successfully fabricated by reacting with a bismaleimide (1,6-bis(maleimido)hexane, 1,6-BMH) and a diisocyanate (4,4'-diphenylmethane diisocyanate, 4,4'-MDI), respectively. This study paves the way for the facile synthesis of functional poly(ester amide)s with great potential in many fields.

2.
Polymers (Basel) ; 14(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36015510

RESUMO

N-Sulfonyl-activated aziridines are known to undergo anionic-ring-opening polymerizations (AROP) to form polysulfonyllaziridines. However, the post-polymerization deprotection of the sulfonyl groups from polysulfonyllaziridines remains challenging. In this report, the polymerization of tert-butyl aziridine-1-carboxylate (BocAz) is reported. BocAz has an electron-withdrawing tert-butyloxycarbonyl (BOC) group on the aziridine nitrogen. The BOC group activates the aziridine for AROP and allows the synthesis of low-molecular-weight poly(BocAz) chains. A 13C NMR spectroscopic analysis of poly(BocAz) suggested that the polymer is linear. The attainable molecular weight of poly(BocAz) is limited by the poor solubility of poly(BocAz) in AROP-compatible solvents. The deprotection of poly(BocAz) using trifluoroacetic acid (TFA) cleanly produces linear polyethyleneimine. Overall, these results suggest that carbonyl groups, such as BOC, can play a larger role in the in the activation of aziridines in anionic polymerization and in the synthesis of polyimines.

3.
Chemphyschem ; 23(9): e202200133, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35231156

RESUMO

Strained ring systems play an important role in synthesis and can be characterized by the ring strain energy (RSE). The RSE of 3, 4, 5, and 6 membered saturated and unsaturated ring systems containing N, O, P, and S heteroatoms and H, F, SiMe3 , and SO2 Me substituents were calculated at the G3(MP2) composite correlated molecular orbital theory level using up to 5 models to predict the RSE. Generally, the RSE decreased as ring size increased with a substantial decrease from 4 to 5 membered rings. Replacement of a ring CH2 with P or S reduced the RSE, consistent with less angle strain. The RSE for unsaturated systems were generally greater than for saturated systems due to increased angle strain. No general trends were found with respect to substituent effects. The RSE values suggest that 3-pyrroline and 2-pyrroline and their derivatives may be able to support ring opening metathesis polymerization and warrant further study.


Assuntos
Polimerização
4.
Polymers (Basel) ; 13(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34578023

RESUMO

Studying the growth of 1D structures formed by the self-assembly of crystalline-coil block copolymers in solution at elevated temperatures is a challenging task. Like most 1D fibril structures, they fragment and dissolve when the solution is heated, creating a mixture of surviving crystallites and free polymer chains. However, unlike protein fibrils, no new nuclei are formed upon cooling and only the surviving crystallites regrow. Here, we report how trapping these crystallites at elevated temperatures allowed us to study their growth kinetics at different annealing times and for different amounts of unimer added. We developed a model describing the growth kinetics of these crystallites that accounts for fragmentation accompanying the 1D growth process. We show that the growth kinetics follow a stretched exponential law that may be due to polymer fractionation. In addition, by evaluating the micelle growth rate as a function of the concentration of unimer present in solution, we could conclude that the micelle growth occurred in the mononucleation regime.

5.
ACS Macro Lett ; 9(3): 334-338, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35648542

RESUMO

Previously, N-(methanesulfonyl)azetidine (MsAzet) was found to polymerize anionically via ring-opening at temperatures >100 °C to form p(MsAzet) in the presence of an anionic initiator. In the current report, potassium(azetidin-1-ylsulfonyl) methanide (KMsAzet), formed from deprotonation of the methanesulfonyl group of MsAzet by KHMDS, is shown to undergo spontaneous AROP at room temperature to form p(N-K-MsAzet). The structure of p(N-K-MsAzet) differs from that of p(MsAzet), as the sulfonyl groups are incorporated into the polymer backbone of p(N-K-MsAzet). Reaction of p(N-K-MsAzet) with MeOH produces p(N-H-MsAzet), a semicrystalline polymer with a structure like that of polyamides, but with sulfonylamides in place of the carboxamides found in polyamides. Reaction of p(N-K-MsAzet) with benzyl bromide results in the formation of amorphous p(N-Bn-MsAzet). P(N-K-MsAzet) is hypothesized to form via an activated monomer anionic polymerization; this is supported by polymerization kinetic data and structural characterization of the resulting polymers.

6.
J Am Chem Soc ; 140(46): 15626-15630, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30407804

RESUMO

The anionic ring-opening copolymerization of N-( p-tolylsulfonyl)azetidine ( pTsAzet) and N-( o-tolylsulfonyl)azetidine ( oTsAzet) produces poly( pTsAzet- co- oTsAzet) as a statistical copolymer. The pTsAzet/ oTsAzet copolymerization is living and allows for the synthesis of poly(sulfonylazetidine) of target molecular weights with narrow dispersities. 1H NMR spectroscopy was used to monitor the kinetics of the polymerization and estimate the monomer reactivity ratios. It was found that the reactivity ratios for oTsAzet and pTsAzet at 180 °C are 1.66 and 0.60, respectively. The tosyl groups of p( pTsAzet- co- oTsAzet) were reductively removed to produce linear poly(trimethylenimine) (LPTMI). This represents the first route to LPTMI of controlled molecular weight and low dispersity. Finally, the slow kinetics of the sulfonylazetidine polymerization facilitated the synthesis of a block copolymer without requiring the sequential addition of monomer. Specifically, pTsAzet, oTsAzet, and ( N- p-toluenesulfonyl-2-methylaziridine) ( pTsMAz) were combined in solution. pTsMAz selectively polymerizes to form the first block at moderate temperature. After consumption of pTsMAz, the temperature was increased to copolymerize pTsAzet and oTsAzet and produce the block copolymer p( pTsMAz)- b-p( pTsAzet- co- oTsAzet).

7.
Nat Commun ; 9(1): 1158, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29559614

RESUMO

Enhanced control over crystallization-driven self-assembly (CDSA) of coil-crystalline block copolymers has led to the formation of intricate structures with well-defined morphology and dimensions. While approaches to build those sophisticated structures may strongly differ from each other, they all share a key cornerstone: a polymer crystallite. Here we report a trapping technique that enables tracking of the change in length of one-dimensional (1D) polymer crystallites as they are annealed in solution at different temperatures. Using the similarities between 1D polymeric micelles and bottle-brush polymers, we developed a model explaining how the dissolving crystallites reach a critical size independent of the annealing temperature, and then explode in a cooperative process involving the remaining polymer chains of the crystallites. This model also allows us to demonstrate the role of the distribution in seed core crystallinity on the dissolution of the crystallites.

8.
Chemistry ; 23(59): 14670-14675, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28863236

RESUMO

Thiophene is one of the most ubiquitous moieties in organic conjugated materials; however, furan, its oxygen congener, and furan derivatives have received comparatively less attention. This is primarily due to the intrinsic instability of furan and its tendency to decompose in the presence of oxygen and light. Incorporating furan into conjugated systems can confer many benefits, including increases in conjugation, improved solubility, and better transport properties. In this Concept Article, advances in furan-containing conjugated materials are presented. The impact of furan on the properties of conjugated materials is discussed, recent advances in synthetic methods are overviewed, and strategies for improving the stability of conjugated furans are detailed.

9.
ACS Macro Lett ; 5(10): 1137-1140, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-35658172

RESUMO

The anionic ring-opening copolymerization of 1-(methylsulfonyl)aziridine (MsAz) and 1-(sec-butylsulfonyl)aziridine (sBsAz) produces a soluble random copolymer P(MsAz-r-sBsAz), which can subsequently be converted to linear poly(ethylenimine) (lPEI). The copolymerization of MsAz and sBsAz is living and allows for the synthesis of copolymers with low molecular weight distributions. Sequential anionic polymerization of MsAz and sBsAz with 2-methyl-1-(methylsulfonyl)aziridine (MsMAz) creates P(MsAz-r-sBsAz)-b-P(MeMsAz). Removal of the sulfonyl groups from P(MsAz-r-sBsAz)-b-P(MsMAz) gives lPEI-b-poly(propylenimine). For the first time, lPEI can be synthesized by a controlled anionic polymerization.

10.
Macromol Rapid Commun ; 36(14): 1336-40, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25945461

RESUMO

A substituted poly(9-borafluorene) (P9BF) homopolymer, a boron congener of polyfluorene, is prepared by Yamamoto coupling of a triisopropylphenyl substituted borafluorene (1). As predicted by prior density functional theory (DFT) studies, P9BF has a reduced optical bandgap (Eg,opt = 2.28 eV) and a significantly lowered LUMO level (-3.9 eV, estimated by cyclic voltammetry (CV)) compared to polyfluorene. In addition to binding fluoride in solution, films of P9BF exhibit a reversible, simultaneous turn-off/turn-on fluorescence response to NH3 vapor. A 9-borafluorene-vinylene copolymer (P9BFV) is synthesized via Stille coupling, demonstrating that 1 can readily be incorporated into copolymers. The extended conjugation of P9BFV due to the inclusion of the vinylene group results in a reduced optical bandgap (2.12 eV) and LUMO (-4.0 eV, estimated by CV) compared to the homopolymer P9BF.


Assuntos
Amônia/análise , Fluorenos/química , Polímeros/química , Espectrometria de Fluorescência , Elétrons , Gases/análise , Teoria Quântica
11.
Nat Chem ; 6(10): 893-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25242484

RESUMO

Recent advances in the self-assembly of block copolymers have enabled the precise fabrication of hierarchical nanostructures using low-cost solution-phase protocols. However, the preparation of well-defined and complex planar nanostructures in which the size is controlled in two dimensions (2D) has remained a challenge. Using a series of platelet-forming block copolymers, we have demonstrated through quantitative experiments that the living crystallization-driven self-assembly (CDSA) approach can be extended to growth in 2D. We used 2D CDSA to prepare uniform lenticular platelet micelles of controlled size and to construct precisely concentric lenticular micelles composed of spatially distinct functional regions, as well as complex structures analogous to nanoscale single- and double-headed arrows and spears. These methods represent a route to hierarchical nanostructures that can be tailored in 2D, with potential applications as diverse as liquid crystals, diagnostic technology and composite reinforcement.

12.
J Am Chem Soc ; 136(11): 4121-4, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24564504

RESUMO

Monodisperse fiber-like micelles with a crystalline π-conjugated polythiophene core with lengths up to ca. 700 nm were successfully prepared from the diblock copolymer poly(3-hexylthiophene)-block-polystyrene using a one-dimensional self-seeding technique. Addition of a polythiophene block copolymer with a different corona-forming block to the resulting nanofibers led to the formation of segmented B-A-B triblock co-micelles by crystallization-driven seeded growth. The key to these advances appears to be the formation of a relatively defect-free crystalline micelle core under the self-seeding conditions.

13.
Chemistry ; 19(28): 9186-97, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23733316

RESUMO

With the aim of accessing colloidally stable, fiberlike, π-conjugated nanostructures of controlled length, we have studied the solution self-assembly of two asymmetric crystalline-coil, regioregular poly(3-hexylthiophene)-b-poly(2-vinylpyridine) (P3HT-b-P2VP) diblock copolymers, P3HT23-b-P2VP115 (block ratio=1:5) and P3HT44-b-P2VP115 (block ratio=ca. 1:3). The self-assembly studies were performed under a variety of solvent conditions that were selective for the P2VP block. The block copolymers were prepared by using Cu-catalyzed azide-alkyne cycloaddition reactions of azide-terminated P2VP and alkyne end-functionalized P3HT homopolymers. When the block copolymers were self-assembled in a solution of a 50% (v/v) mixture of THF (a good solvent for both blocks) and an alcohol (a selective solvent for the P2VP block) by means of the slow evaporation of the common solvent; fiberlike micelles with a P3HT core and a P2VP corona were observed by transmission electron microscopy (TEM). The average lengths of the micelles were found to increase as the length of the hydrocarbon chain increased in the P2VP-selective alcoholic solvent (MeOH3 µm) fiberlike micelles were prepared by the dialysis of solutions of the block copolymers in THF against iPrOH. Furthermore the widths of the fibers were dependent on the degree of polymerization of the chain-extended P3HT blocks. The crystallinity and π-conjugated nature of the P3HT core in the fiberlike micelles was confirmed by a combination of UV/Vis spectroscopy, photoluminescence (PL) measurements, and wide-angle X-ray scattering (WAXS). Intense sonication (iPrOH, 1 h, 0 °C) of the fiberlike micelles formed by P3HT23-b-P2VP115 resulted in small (ca. 25 nm long) stublike fragments that were subsequently used as initiators in seeded growth experiments. Addition of P3HT23-b-P2VP115 unimers to the seeds allowed the preparation of fiberlike micelles with narrow length distributions (L(w)/L(n) < 1.11) and lengths from about 100-300 nm, that were dependent on the unimer-to-seed micelle ratio.

14.
ACS Nano ; 7(5): 3754-66, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23586519

RESUMO

One-dimensional micelles formed by the self-assembly of crystalline-coil poly(ferrocenyldimethylsilane) (PFS) block copolymers exhibit self-seeding behavior when solutions of short micelle fragments are heated above a certain temperature and then cooled back to room temperature. In this process, a fraction of the fragments (the least crystalline fragments) dissolves at elevated temperature, but the dissolved polymer crystallizes onto the ends of the remaining seed fragments upon cooling. This process yields longer nanostructures (up to 1 µm) with uniform width (ca. 15 nm) and a narrow length distribution. In this paper, we describe a systematic investigation of factors that affect the self-seeding behavior of PFS block copolymer micelle fragments. For PI(1000)-PFS(50) (the subscripts refer to the number average degree of polymerization) in decane, these factors include the presence of a good solvent (THF) for PFS and the effect of annealing the fragments prior to the self-seeding experiments. THF promoted the dissolution of the micelle fragments, while preannealing improved their stability. We also extended our experiments to other PFS block copolymers with different corona-forming blocks. These included PI(637)-PFS(53) in decane, PFS(60)-PDMS(660) in decane (PDMS = polydimethylsiloxane), and PFS(30)-P2VP(300) in 2-propanol (P2VP = poly(2-vinylpyridine)). The most remarkable result of these experiments is our finding that the corona-forming chain plays an important role in affecting how the PFS chains crystallize in the core of the micelles and, subsequently, the range of temperatures over which the micelle fragments dissolve. Our results also show that self-seeding is a versatile approach to generate uniform PFS fiber-like nanostructures, and in principle, the method should be extendable to a wide variety of crystalline-coil block copolymers.

16.
Science ; 337(6094): 559-62, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22859484

RESUMO

Although solution self-assembly of block copolymers (BCPs) represents one of the most promising approaches to the creation of nanoparticles from soft matter, the formation of non-centrosymmetric nanostructures with shape anisotropy remains a major challenge. Through a combination of crystallization-driven self-assembly of crystalline-coil BCPs in solution and selective micelle corona cross-linking, we have created short (about 130 nanometers), monodisperse cylindrical seed micelles that grow unidirectionally. These nanostructures grow to form long, non-centrosymmetric cylindrical A-B and A-B-C block co-micelles upon the addition of further BCPs. We also illustrate the formation of amphiphilic cylindrical A-B-C block co-micelles, which spontaneously self-assemble into hierarchical star-shaped supermicelle architectures with a diameter of about 3 micrometers. The method described enables the rational creation of non-centrosymmetric, high aspect ratio, colloidally stable core-shell nanoparticles in a manner that until now has been restricted to the biological domain.


Assuntos
Micelas , Nanopartículas/química , Nanotecnologia/métodos , Polímeros/química , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura
17.
Angew Chem Int Ed Engl ; 51(32): 7898-921, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22806974

RESUMO

Recent advances in polymer synthesis have significantly enhanced the ability to rationally design block copolymers with tailored functionality. The self-assembly of these macromolecules in the solid state or in solution allows the formation of nanostructured materials with a variety of properties and potential functions. This Review illustrates recent progress in the field of block copolymer materials by highlighting selected emerging applications.

18.
Inorg Chem ; 51(13): 7306-16, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22686452

RESUMO

A series of cationic cryptand complexes of tin(II), [Cryptand[2.2.2]SnX][SnX(3)] (10, X = Cl; 11, X = Br; 12, X = I) and [Cryptand[2.2.2]Sn][OTf](2) (13), were synthesized by the addition of cryptand[2.2.2] to a solution of either tin(II) chloride, iodide, or trifluoromethanesulfonate. The complexes could also be synthesized by the addition of the appropriate trimethylsilyl halide (or pseudohalide) reagent to a solution of tin(II) chloride and cryptand[2.2.2]. The complexes were characterized using a variety of techniques including NMR, Raman, and temperature-dependent Mössbauer spectroscopy, mass spectrometry, and X-ray diffraction.

19.
J Am Chem Soc ; 133(42): 16947-57, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-21967615

RESUMO

Previous work has established that polyisoprene (PI) coronas in cylindrical block copolymer micelles with a poly(ferrocenyldimethylsilane) (PFS) core can be irreversibly cross-linked by hydrosilylation using (HSiMe(2))(2)O in the presence of Karstedt's catalyst. We now show that treatment of cylindrical PI-b-PFS micelles with Karstedt's catalyst alone, in the absence of any silanes, leads to PI coronal cross-linking through Pt(0)-olefin coordination. The cross-linking can be reversed through the addition of 2-bis(diphenylphosphino)ethane (dppe), a strong bidentate ligand, which removes the platinum from the PI to form Pt(dppe)(2). The Pt(0) cross-linking of PI was studied with self-assembled cylindrical PI-b-PFS block copolymer micelles, where the cross-linking was found to dramatically increase the stability of the micellar structures. The Pt(0)-alkene coordination-induced cross-linking can be used to provide transmission electron microscopy contrast between PI and poly(dimethylsiloxane) (PDMS) corona domains in block comicelles as the process selectively increases the electron density of the PI regions. Moreover, following the assembly of a hierarchical scarf-shaped comicelle consisting of a PFS-b-PDMS platelet template with PI-b-PFS tassels, Pt(0)-induced cross-linking of the PI coronal regions allowed for the selective removal of the PFS-b-PDMS center, leaving behind an unprecedented hollowed-out scarf structure. The addition of Karstedt's catalyst to PI or polybutadiene homopolymer toluene/xylene solutions resulted in the formation of polymer gels which underwent de-gelation upon the addition of dppe.

20.
J Am Chem Soc ; 133(42): 17056-62, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-21882804

RESUMO

The self-assembly of block copolymers in selective solvents represents a powerful approach to functional core-shell nanoparticles. Crystallization of the core can play a critical role in directing self-assembly toward desirable, nonspherical morphologies with low mean interfacial curvature. Moreover, epitaxial growth processes have been implicated in recent advances that permit access to monodisperse cylinders, cylindrical block comicelles with segmented cores and/or coronas, and complex hierarchical architectures. However, how the core-forming block crystallizes in an inherently curved nanoscopic environment has not been resolved. Herein we report the results of synchrotron small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) studies of well-defined, monodisperse crystalline-coil polyisoprene-block-polyferrocenylsilane cylindrical micelles aligned in an electric field. WAXS studies of the aligned cylinders have provided key structural information on the nature of the PFS micelle core together with insight into the role of polymer crystallinity in the self-assembly of these and potentially related crystalline-coil block copolymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...