Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Med Phys ; 51(4): 2413-2423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431967

RESUMO

BACKGROUND: Individuals with asthma can vary widely in clinical presentation, severity, and pathobiology. Hyperpolarized xenon-129 (Xe129) MRI is a novel imaging method to provide 3-D mapping of both ventilation and gas exchange in the human lung. PURPOSE: To evaluate the functional changes in adults with asthma as compared to healthy controls using Xe129 MRI. METHODS: All subjects (20 controls and 20 asthmatics) underwent lung function measurements and Xe129 MRI on the same day. Outcome measures included the pulmonary ventilation defect and transfer of inspired Xe129 into two soluble compartments: tissue and blood. Ten asthmatics underwent Xe129 MRI before and after bronchodilator to test whether gas transfer measures change with bronchodilator effects. RESULTS: Initial analysis of the results revealed striking differences in gas transfer measures based on age, hence we compared outcomes in younger (n = 24, ≤ 35 years) versus older (n = 16, > 45 years) asthmatics and controls. The younger asthmatics exhibited significantly lower Xe129 gas uptake by lung tissue (Asthmatic: 0.98% ± 0.24%, Control: 1.17% ± 0.12%, P = 0.035), and higher Xe129 gas transfer from tissue to the blood (Asthmatic: 0.40 ± 0.10, Control: 0.31% ± 0.03%, P = 0.035) than the younger controls. No significant difference in Xe129 gas transfer was observed in the older group between asthmatics and controls (P > 0.05). No significant change in Xe129 transfer was observed before and after bronchodilator treatment. CONCLUSIONS: By using Xe129 MRI, we discovered heterogeneous alterations of gas transfer that have associations with age. This finding suggests a heretofore unrecognized physiological derangement in the gas/tissue/blood interface in young adults with asthma that deserves further study.


Assuntos
Asma , Broncodilatadores , Adulto Jovem , Humanos , Adulto , Broncodilatadores/uso terapêutico , Barreira Alveolocapilar , Pulmão/diagnóstico por imagem , Asma/diagnóstico por imagem , Asma/tratamento farmacológico , Isótopos de Xenônio , Imageamento por Ressonância Magnética/métodos , Xenônio/uso terapêutico
2.
J Vis Exp ; (201)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38009715

RESUMO

Hyperpolarized Xenon-129 (HXe) magnetic resonance imaging (MRI) provides tools for obtaining 2- or 3-dimensional maps of lung ventilation patterns, gas diffusion, Xenon uptake by lung parenchyma, and other lung function metrics. However, by trading spatial for temporal resolution, it also enables tracing of pulmonary Xenon gas exchange on a ms timescale. This article describes one such technique, chemical shift saturation recovery (CSSR) MR spectroscopy. It illustrates how it can be used to assess capillary blood volume, septal wall thickness, and the surface-to-volume ratio in the alveoli. The flip angle of the applied radiofrequency pulses (RF) was carefully calibrated. Single-dose breath-hold and multi-dose free-breathing protocols were employed for administering the gas to the subject. Once the inhaled Xenon gas reached the alveoli, a series of 90° RF pulses was applied to ensure maximum saturation of the accumulated Xenon magnetization in the lung parenchyma. Following a variable delay time, spectra were acquired to quantify the regrowth of the Xenon signal due to gas exchange between the alveolar gas volume and the tissue compartments of the lung. These spectra were then analyzed by fitting complex pseudo-Voigt functions to the three dominant peaks. Finally, the delay time-dependent peak amplitudes were fitted to a one-dimensional analytical gas-exchange model to extract physiological parameters.


Assuntos
Isótopos de Xenônio , Xenônio , Isótopos de Xenônio/química , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética
3.
Magn Reson Med ; 90(6): 2334-2347, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37533368

RESUMO

PURPOSE: To demonstrate the feasibility of a multi-breath xenon-polarization transfer contrast (XTC) MR imaging approach for simultaneously evaluating regional ventilation and gas exchange parameters. METHODS: Imaging was performed in five healthy volunteers and six chronic obstructive pulmonary disease (COPD) patients. The multi-breath XTC protocol consisted of three repeated schemes of six wash-in breaths of a xenon mixture and four normoxic wash-out breaths, with and without selective saturation of either the tissue membrane or red blood cell (RBC) resonances. Acquisitions were performed at end-exhalation while subjects maintained tidal breathing throughout the session. The no-saturation, membrane-saturation, and RBC-saturation images were fit to a per-breath gas replacement model for extracting voxelwise tidal volume (TV), functional residual capacity (FRC), and fractional ventilation (FV), as well as tissue- and RBC-gas exchange (fMem and fRBC , respectively). The sensitivity of the derived model was also evaluated via simulations. RESULTS: With the exception of FRC, whole-lung averages for all metrics were decreased in the COPD subjects compared to the healthy cohort, significantly so for FV, fRBC , and fMem . Heterogeneity was higher overall in the COPD subjects, particularly for fRBC , fMem , and fRBC:Mem . The anterior-to-posterior gradient associated with the gravity-dependence of lung function in supine imaging was also evident for FV, fRBC , and fMem values in the healthy subjects, but noticeably absent in the COPD cohort. CONCLUSION: Multi-breath XTC imaging generated high-resolution, co-registered maps of ventilation and gas exchange parameters acquired during tidal breathing and with low per-breath xenon doses. Clear differences between healthy and COPD subjects were apparent and consistent with spirometry.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Xenônio , Humanos , Pulmão/diagnóstico por imagem , Isótopos de Xenônio , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
4.
Biomedicines ; 11(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37371626

RESUMO

PURPOSE: The existing tools to quantify lung function in interstitial lung diseases have significant limitations. Lung MRI imaging using inhaled hyperpolarized xenon-129 gas (129Xe) as a contrast agent is a new technology for measuring regional lung physiology. We sought to assess the utility of the 129Xe MRI in detecting impaired lung physiology in usual interstitial pneumonia (UIP). MATERIALS AND METHODS: After institutional review board approval and informed consent and in compliance with HIPAA regulations, we performed chest CT, pulmonary function tests (PFTs), and 129Xe MRI in 10 UIP subjects and 10 healthy controls. RESULTS: The 129Xe MRI detected highly heterogeneous abnormalities within individual UIP subjects as compared to controls. Subjects with UIP had markedly impaired ventilation (ventilation defect fraction: UIP: 30 ± 9%; healthy: 21 ± 9%; p = 0.026), a greater amount of 129Xe dissolved in the lung interstitium (tissue-to-gas ratio: UIP: 1.45 ± 0.35%; healthy: 1.10 ± 0.17%; p = 0.014), and impaired 129Xe diffusion into the blood (RBC-to-tissue ratio: UIP: 0.20 ± 0.06; healthy: 0.28 ± 0.05; p = 0.004). Most MRI variables had no correlation with the CT and PFT measurements. The elevated level of 129Xe dissolved in the lung interstitium, in particular, was detectable even in subjects with normal or mildly impaired PFTs, suggesting that this measurement may represent a new method for detecting early fibrosis. CONCLUSION: The hyperpolarized 129Xe MRI was highly sensitive to regional functional changes in subjects with UIP and may represent a new tool for understanding the pathophysiology, monitoring the progression, and assessing the effectiveness of treatment in UIP.

5.
Magn Reson Med ; 88(6): 2447-2460, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36046917

RESUMO

PURPOSE: To demonstrate the utility of continuous-wave (CW) saturation pulses in xenon-polarization transfer contrast (XTC) MRI and MRS, to investigate the selectivity of CW pulses applied to dissolved-phase resonances, and to develop a correction method for measurement biases from saturation of the nontargeted dissolved-phase compartment. METHODS: Studies were performed in six healthy Sprague-Dawley rats over a series of end-exhale breath holds. Discrete saturation schemes included a series of 30 Gaussian pulses (8 ms FWHM), spaced 25 ms apart; CW saturation schemes included single block pulses, with variable flip angle and duration. In XTC imaging, saturation pulses were applied on both dissolved-phase resonance frequencies and off-resonance, to correct for other sources of signal loss and compromised selectivity. In spectroscopy experiments, saturation pulses were applied at a set of 19 frequencies spread out between 185 and 200 ppm to map out modified z-spectra. RESULTS: Both modified z-spectra and imaging results showed that CW RF pulses offer sufficient depolarization and improved selectivity for generating contrast between presaturation and postsaturation acquisitions. A comparison of results obtained using a variety of saturation parameters confirms that saturation pulses applied at higher powers exhibit increased cross-contamination between dissolved-phase resonances. CONCLUSION: Using CW RF saturation pulses in XTC contrast preparation, with the proposed correction method, offers a potentially more selective alternative to traditional discrete saturation. The suppression of the red blood cell contribution to the gas-phase depolarization opens the door to a novel way of quantifying exchange time between alveolar volume and hemoglobin.


Assuntos
Isótopos de Xenônio , Xenônio , Animais , Pulmão , Imageamento por Ressonância Magnética/métodos , Ratos , Ratos Sprague-Dawley , Isótopos de Xenônio/química
7.
NMR Biomed ; 35(3): e4639, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34729838

RESUMO

RATIONALE: Hyperpolarized (HP) 129 Xe-MRI provides non-invasive methods to quantify lung function and structure, with the 129 Xe apparent diffusion coefficient (ADC) being a well validated measure of alveolar airspace size. However, the experimental factors that impact the precision and accuracy of HP 129 Xe ADC measurements have not been rigorously investigated. Here, we introduce an analytical model to predict the experimental uncertainty of 129 Xe ADC estimates. Additionally, we report ADC dependence on age in healthy pediatric volunteers. METHODS: An analytical expression for ADC uncertainty was derived from the Stejskal-Tanner equation and simplified Bloch equations appropriate for HP media. Parameters in the model were maximum b-value (bmax ), number of b-values (Nb ), number of phase encoding lines (Nph ), flip angle and the ADC itself. This model was validated by simulations and phantom experiments, and five fitting methods for calculating ADC were investigated. To examine the lower range for 129 Xe ADC, 32 healthy subjects (age 6-40 years) underwent diffusion-weighted 129 Xe MRI. RESULTS: The analytical model provides a lower bound on ADC uncertainty and predicts that decreased signal-to-noise ratio yields increases in relative uncertainty (ϵADC) . As such, experimental parameters that impact non-equilibrium 129 Xe magnetization necessarily impact the resulting ϵADC . The values of diffusion encoding parameters (Nb and bmax ) that minimize ϵADC strongly depend on the underlying ADC value, resulting in a global minimum for ϵADC . Bayesian fitting outperformed other methods (error < 5%) for estimating ADC. The whole-lung mean 129 Xe ADC of healthy subjects increased with age at a rate of 1.75 × 10-4  cm2 /s/yr (p = 0.001). CONCLUSIONS: HP 129 Xe diffusion MRI can be improved by minimizing the uncertainty of ADC measurements via uncertainty propagation. Doing so will improve experimental accuracy when measuring lung microstructure in vivo and should allow improved monitoring of regional disease progression and assessment of therapy response in a range of lung diseases.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Pulmão/diagnóstico por imagem , Isótopos de Xenônio , Adolescente , Adulto , Fatores Etários , Criança , Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Razão Sinal-Ruído , Incerteza , Adulto Jovem
8.
J Physiol ; 599(17): 4197-4223, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34256417

RESUMO

KEY POINTS: Multibreath imaging to estimate regional gas mixing efficiency is superior to intensity-based single-breath ventilation markers, as it is capable of revealing minute but essential measures of ventilation heterogeneity which may be sensitive to subclinical alterations in the early stages of both obstructive and restrictive respiratory disorders. Large-scale convective stratification of ventilation in central-to-peripheral directions is the dominant feature of observed ventilation heterogeneity when imaging a heavy/less diffusive xenon gas mixture; smaller-scale patchiness, probably originating from asymmetric lung function at bronchial airway branching due to the interaction of convective and diffusive flows, is the dominant feature when imaging a lighter/more diffusive helium gas mixture. Since detecting low regional ventilation is crucial for characterizing diseased lungs, our results suggest that dilution with natural abundance helium and imaging at higher lung volumes seem advisable when imaging with hyperpolarized 129 Xe; this will allow the imaging gas to reach slow-filling and/or non-dependent lung regions, which might otherwise be impossible to distinguish from total ventilation shunt regions. The ability to differentiate these regions from those of total shunt is worse with typical single-breath imaging techniques. ABSTRACT: The mixing of freshly inhaled gas with gas already present in the lung can be directly assessed with heretofore unachievable precision via magnetic resonance imaging of signal build-up resulting from multiple wash-ins of a hyperpolarized (HP) gas. Here, we used normoxic HP 3 He and 129 Xe mixtures to study regional ventilation at different spatial scales in five healthy mechanically ventilated supine rabbits at two different inspired volumes. To decouple the respective effects of density and diffusion rates on ventilation heterogeneity, two additional studies were performed: one in which 3 He was diluted with an equal fraction of natural abundance xenon, and one in which 129 Xe was diluted with an equal fraction of 4 He. We observed systematic differences in the spatial scale of specific ventilation heterogeneity between HP 3 He and 129 Xe. We found that large-scale, central-to-peripheral convective ventilation inhomogeneity is the dominant cause of observed heterogeneity when breathing a normoxic xenon gas mixture. In contrast, small-scale ventilation heterogeneity in the form of patchiness, probably originating from asymmetric lung function at bronchial airway branching due to interactions between convective and diffusive flows, is the dominant feature when breathing a normoxic helium gas mixture, for which the critical zone occurs more proximally and at an imageable spatial scale. We also showed that the existence of particular underventilated non-dependent lung regions when breathing a heavy gas mixture is the result of the density of that mixture - rather than, for example, its diffusion rate or viscosity. Finally, we showed that gravity-dependent ventilation heterogeneity becomes substantially more uniform at higher inspired volumes for xenon gas mixtures compared to helium mixtures.


Assuntos
Hélio , Isótopos de Xenônio , Animais , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Coelhos , Respiração , Xenônio
9.
Magn Reson Med ; 85(5): 2709-2722, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33283943

RESUMO

PURPOSE: To demonstrate the feasibility of generating red blood cell (RBC) and tissue/plasma (TP)-specific gas-phase (GP) depolarization maps using xenon-polarization transfer contrast (XTC) MR imaging. METHODS: Imaging was performed in three healthy subjects, an asymptomatic smoker, and a chronic obstructive pulmonary disease (COPD) patient. Single-breath XTC data were acquired through a series of three GP images using a 2D multi-slice GRE during a 12 s breath-hold. A series of 8 ms Gaussian inversion pulses spaced 30 ms apart were applied in-between the images to quantify the exchange between the GP and dissolved-phase (DP) compartments. Inversion pulses were either centered on-resonance to generate contrast, or off-resonance to correct for other sources of signal loss. For an alternative scheme, inversions of both RBC and TP resonances were inserted in lieu of off-resonance pulses. Finally, this technique was extended to a multi-breath protocol consistent with tidal breathing, involving 30 consecutive acquisitions. RESULTS: Inversion pulses shifted off-resonance by 20 ppm to mimic the distance between the RBC and TP resonances demonstrated selectivity, and initial GP depolarization maps illustrated stark magnitude and distribution differences between healthy and diseased subjects that were consistent with traditional approaches. CONCLUSION: The proposed DP-compartment selective XTC MRI technique provides information on gas exchange between all three detectable states of xenon in the lungs and is sufficiently sensitive to indicate differences in lung function between the study subjects. Investigated extensions of this approach to imaging schemes that either minimize breath-hold duration or the overall number of breath-holds open avenues for future research to improve measurement accuracy and patient comfort.


Assuntos
Troca Gasosa Pulmonar , Isótopos de Xenônio , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Xenônio
10.
NMR Biomed ; 33(11): e4380, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32681670

RESUMO

Increased pulmonary lactate production is correlated with severity of lung injury and outcome in acute respiratory distress syndrome (ARDS) patients. This study was conducted to investigate the relative contributions of inflammation and hypoxia to the lung's metabolic shift to glycolysis in an experimental animal model of ARDS using hyperpolarized (HP) 13 C MRI. Fifty-three intubated and mechanically ventilated male rats were imaged using HP 13 C MRI before, and 1, 2.5 and 4 hours after saline (sham) or hydrochloric acid (HCl; 0.5 ml/kg) instillation in the trachea, followed by protective and nonprotective mechanical ventilation (HCl-PEEP and HCl-ZEEP) or the start of moderate or severe hypoxia (Hyp90 and Hyp75 groups). Pulmonary and cardiac HP lactate-to-pyruvate ratios were compared among groups for different time points. Postmortem histology and immunofluorescence were used to assess lung injury severity and quantify the expression of innate inflammatory markers and local tissue hypoxia. HP pulmonary lactate-to-pyruvate ratio progressively increased in rats with lung injury and moderate hypoxia (HCl-ZEEP), with no significant change in pulmonary lactate-to-pyruvate ratio in noninjured but moderately hypoxic rats (Hyp90). Pulmonary lactate-to-pyruvate ratio was elevated in otherwise healthy lung tissue only in severe systemic hypoxia (Hyp75 group). ex vivo histological and immunopathological assessment further confirmed the link between elevated glycolysis and the recruitment into and presence of activated neutrophils in injured lungs. HP lactate-to-pyruvate ratio is elevated in injured lungs predominantly as a result of increased glycolysis in activated inflammatory cells, but can also increase due to severe inflammation-induced hypoxia.


Assuntos
Lesão Pulmonar/metabolismo , Pulmão/metabolismo , Pneumonia/metabolismo , Ácido Pirúvico/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Animais , Modelos Animais de Doenças , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Ácido Láctico/metabolismo , Lesão Pulmonar/complicações , Masculino , Peroxidase/metabolismo , Pneumonia/complicações , Ratos Sprague-Dawley , Síndrome do Desconforto Respiratório/complicações
11.
Magn Reson Med ; 84(6): 3027-3039, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32557808

RESUMO

PURPOSE: To investigate biases in the measurement of apparent alveolar septal wall thickness (SWT) with hyperpolarized xenon-129 (HXe) as a function of acquisition parameters. METHODS: The HXe MRI scans with simultaneous gas-phase and dissolved-phase excitation were performed using 1-dimensional projection scans in mechanically ventilated rabbits. The dissolved-phase magnetization was periodically saturated, and the dissolved-phase xenon uptake dynamics were measured at end inspiration and end expiration with temporal resolutions up to 10 ms using a Look-Locker-type acquisition. The apparent alveolar septal wall thickness was extracted by fitting the signal to a theoretical model, and the findings were compared with those from the more commonly use chemical shift saturation recovery MRI spectroscopy technique with several different delay time arrangements. RESULTS: It was found that repeated application of RF saturation pulses in chemical shift saturation recovery acquisitions caused exchange-dependent gas-phase saturation that heavily biased the derived SWT value. When this bias was reduced by our proposed method, the SWT dependence on lung inflation disappeared due to an inherent insensitivity of HXe dissolved-phase MRI to thin alveolar structures with very short T2∗ . Furthermore, perfusion-based macroscopic gas transport processes were demonstrated to cause increasing apparent SWTs with TE (2.5 µm/ms at end expiration) and a lung periphery-to-center SWT gradient. CONCLUSION: The apparent SWT measured with HXe MRI was found to be heavily dependent on the acquisition parameters. A method is proposed that can minimize this measurement bias, add limited spatial resolution, and reduce measurement time to a degree that free-breathing studies are feasible.


Assuntos
Pulmão , Isótopos de Xenônio , Animais , Viés , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Coelhos
12.
Respir Physiol Neurobiol ; 272: 103311, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31585172

RESUMO

A characteristic feature of obstructive lung diseases is the narrowing of small airways, which affects regional airflow patterns within the lung. However, the extent to which these patterns differ between healthy and diseased states is unknown. To investigate airflow patterns in detail, we first used particle image velocimetry measurements to validate a large eddy simulation model of flow in a patient-specific geometry. We then predicted flow patterns in the central airway under exhalation for three flow conditions-normal, intermediate, and severe-where boundary conditions represented the effect of lower airway obstructions. We computed Pearson correlation coefficients (R) to assess the similarity of flow patterns, and found that flow patterns demonstrated the greatest differentiation between flow conditions in the right main bronchi (R ≤0.60), whereas those in the secondary branches and regions of the trachea showed high correlation (R ≥0.90). These results indicate that although flow patterns are distinct between flow conditions, the choice of measurement location is critical for differentiation.


Assuntos
Modelos Anatômicos , Modelos Biológicos , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fenômenos Fisiológicos Respiratórios , Adulto , Simulação por Computador , Humanos , Hidrodinâmica , Reologia
13.
J Biomech Eng ; 141(11)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074759

RESUMO

Respiration is a dynamic process accompanied by morphological changes in the airways. Although deformation of large airways is expected to exacerbate pulmonary disease symptoms by obstructing airflow during increased minute ventilation, its quantitative effects on airflow characteristics remain unclear. Here, we used in vivo dynamic imaging and examined the effects of tracheal deformation on airflow characteristics under different conditions based on imaging data from a single healthy volunteer. First, we measured tracheal deformation profiles of a healthy lung using magnetic resonance imaging (MRI) during forced exhalation, which we simulated to characterize the subject-specific airflow patterns. Subsequently, for both inhalation and exhalation, we compared the airflows when the modeled deformation in tracheal cross-sectional area was 0% (rigid), 33% (mild), 50% (moderate), or 75% (severe). We quantified differences in airflow patterns between deformable and rigid airways by computing the correlation coefficients (R) and the root-mean-square of differences (Drms) between their velocity contours. For both inhalation and exhalation, airflow patterns were similar in all branches between the rigid and mild conditions (R > 0.9; Drms < 32%). However, airflow characteristics in the moderate and severe conditions differed markedly from those in the rigid and mild conditions in all lung branches, particularly for inhalation (moderate: R > 0.1, Drms < 76%; severe: R > 0.2, Drms < 96%). Our exemplar study supports the use of a rigid airway assumption to compute flows for mild deformation. For moderate or severe deformation, however, dynamic contraction should be considered, especially during inhalation, to accurately predict airflow and elucidate the underlying pulmonary pathology.

14.
IEEE Trans Med Imaging ; 38(9): 2081-2091, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30990426

RESUMO

Hyperpolarized 129Xe magnetic resonance imaging is a powerful modality capable of assessing lung structure and function. While it has shown promise as a clinical tool for the longitudinal assessment of lung function, its utility as an investigative tool for animal models of pulmonary diseases is limited by the necessity of invasive intubation and mechanical ventilation procedures. In this paper, we overcame this limitation by developing a gas delivery system and implementing a set of imaging schemes to acquire high-resolution gas- and dissolved-phase images in free-breathing mice. Gradient echo pulse sequences were used to acquire both high- and low-resolution gas-phase images, and regional fractional ventilation was quantified by comparing signal buildup among low-resolution gas-phase images acquired at two flip-angles. Dissolved-phase images were acquired using both ultra-short echo time and chemical shift imaging sequences with discrete sets of flip-angle/repetition time combinations to visualize gas uptake and distribution throughout the body. Spectral features distinct to various anatomical regions were identified in images acquired using the latter sequence and were used for the quantification of gas arrival times for respective compartments.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Pulmão , Imageamento por Ressonância Magnética/métodos , Isótopos de Xenônio , Animais , Desenho de Equipamento , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Respiração , Isótopos de Xenônio/administração & dosagem , Isótopos de Xenônio/química
15.
Sci Rep ; 9(1): 2413, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787357

RESUMO

While hyperpolarized xenon-129 (HXe) MRI offers a wide array of tools for assessing functional aspects of the lung, existing techniques provide only limited quantitative information about the impact of an observed pathology on overall lung function. By selectively destroying the alveolar HXe gas phase magnetization in a volume of interest and monitoring the subsequent decrease in the signal from xenon dissolved in the blood inside the left ventricle of the heart, it is possible to directly measure the contribution of that saturated lung volume to the gas transport capacity of the entire lung. In mechanically ventilated rabbits, we found that both xenon gas transport and transport efficiency exhibited a gravitation-induced anterior-to-posterior gradient that disappeared or reversed direction, respectively, when the animal was turned from supine to prone position. Further, posterior ventilation defects secondary to acute lung injury could be re-inflated by applying positive end expiratory pressure, although at the expense of decreased gas transport efficiency in the anterior volumes. These findings suggest that our technique might prove highly valuable for evaluating lung transplants and lung resections, and could improve our understanding of optimal mechanical ventilator settings in acute lung injury.


Assuntos
Gases/metabolismo , Coração/fisiologia , Pulmão/metabolismo , Troca Gasosa Pulmonar/fisiologia , Animais , Ventrículos do Coração/efeitos dos fármacos , Humanos , Pulmão/fisiologia , Imageamento por Ressonância Magnética/métodos , Decúbito Ventral , Coelhos , Respiração Artificial , Função Ventricular/fisiologia , Isótopos de Xenônio/farmacologia
16.
Acad Radiol ; 26(3): 367-382, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30630659

RESUMO

RATIONALE AND OBJECTIVES: In this study, we compared a newly developed multibreath simultaneous alveolar oxygen tension and apparent diffusion coefficient (PAO2-ADC) imaging sequence to a single-breath acquisition, with the aim of mitigating the compromising effects of intervoxel flow and slow-filling regions on single-breath measurements, especially in chronic obstructive pulmonary disease (COPD) subjects. MATERIALS AND METHODS: Both single-breath and multibreath simultaneous PAO2-ADC imaging schemes were performed on a total of 10 human subjects (five asymptomatic smokers and five COPD subjects). Estimated PAO2 and ADC values derived from the different sequences were compared both globally and regionally. The distribution of voxels with nonphysiological values was also compared between the two schemes. RESULTS: The multibreath protocol decreased the ventilation defect volumes by an average of 12.9 ± 6.6%. The multibreath sequence generated nonphysiological PAO2 values in 11.0 ± 8.5% fewer voxels than the single-breath sequence. Single-breath PAO2 maps also showed more regions with gas-flow artifacts and general signal heterogeneity. On average, the standard deviation of the PAO2 distribution was 16.5 ± 7.0% lower using multibreath PAO2-ADC imaging, suggesting a more homogeneous gas distribution. Both mean and standard deviation of the ADC increased significantly from single- to multibreath imaging (p = 0.048 and p = 0.070, respectively), suggesting more emphysematous regions in the slow-filling lung. CONCLUSION: Multibreath PAO2-ADC imaging provides superior accuracy and efficiency compared to previous imaging protocols. PAO2 and ADC maps generated by multibreath imaging allowed for the qualification of various regions as emphysematous or obstructed, which single-breath PAO2 maps can only identify as defects. The simultaneous PAO2 and ADC measurements generated by the presented multibreath method were also more physiologically realistic, and allowed for more detailed analysis of the slow-filling regions characteristic of COPD subjects.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Enfisema/diagnóstico por imagem , Oxigênio/análise , Alvéolos Pulmonares/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Hélio , Humanos , Isótopos , Masculino , Pessoa de Meia-Idade , Pressão Parcial , Respiração
17.
Acad Radiol ; 26(3): 326-334, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30087065

RESUMO

RATIONALE AND OBJECTIVES: Chronic obstructive pulmonary disease (COPD) is highly heterogeneous and not well understood. Hyperpolarized xenon-129 (Xe129) magnetic resonance imaging (MRI) provides a unique way to assess important lung functions such as gas uptake. In this pilot study, we exploited multiple imaging modalities, including computed tomography (CT), gadolinium-enhanced perfusion MRI, and Xe129 MRI, to perform a detailed investigation of changes in lung morphology and functions in COPD. Utility and strengths of Xe129 MRI in assessing COPD were also evaluated against the other imaging modalities. MATERIALS AND METHODS: Four COPD patients and four age-matched normal subjects participated in this study. Lung tissue density measured by CT, perfusion measures from gadolinium-enhanced MRI, and ventilation and gas uptake measures from Xe129 MRI were calculated for individual lung lobes to assess regional changes in lung morphology and function, and to investigate correlations among the different imaging modalities. RESULTS: No significant differences were found for all measures among the five lobes in either the COPD or age-matched normal group. Strong correlations (R > 0.5 or < -0.5, p < 0.001) were found between ventilation and perfusion measures. Also gas uptake by blood as measured by Xe129 MRI showed strong correlations with CT tissue density and ventilation measures (R > 0.5 or < -0.5, p < 0.001) and moderate to strong correlations with perfusion measures (R > 0.4 or < -0.5, p < 0.01). Four distinctive patterns of functional abnormalities were found in patients with COPD. CONCLUSION: Xe129 MRI has high potential to uniquely identify multiple changes in lung physiology in COPD using a single breath-hold acquisition.


Assuntos
Imageamento por Ressonância Magnética/métodos , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Tomografia Computadorizada por Raios X , Cintilografia de Ventilação/Perfusão , Idoso , Estudos de Casos e Controles , Feminino , Gadolínio , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Ventilação Pulmonar , Isótopos de Xenônio
18.
Magn Reson Med ; 81(1): 13-24, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30198113

RESUMO

PURPOSE: To evaluate the reproducibility and regional variation of parameters obtained from localized 129 Xe chemical shift saturation recovery (CSSR) MR spectroscopy in healthy volunteers and patients with chronic obstructive pulmonary disease (COPD) and to compare the results to 129 Xe dissolved-phase MR imaging. METHODS: Thirteen healthy volunteers and 10 COPD patients were scanned twice using 129 Xe dissolved-phase imaging, CSSR, and ventilation imaging sequences. A 16-channel phased-array coil in combination with the regularized spectral localization achieved by sensitivity heterogeneity (SPLASH) method was used to perform a regional analysis of CSSR data. Lung function and microstructural parameters were obtained using Patz model functions and their reproducibility was assessed. RESULTS: The Patz model alveolar wall thickness parameter shows good reproducibility on a regional basis with a median coefficient of variation of 6.5% in healthy volunteers and 12.4% in COPD patients. Significant regional differences of lung function parameters derived from localized CSSR were found in healthy volunteers and correlations with spirometric indices were found. CONCLUSION: Localized 129 Xe CSSR provides reproducible estimates of alveolar wall thickness and is able to detect regional differences of lung microstructure.


Assuntos
Pulmão/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Isótopos de Xenônio , Adulto , Idoso , Algoritmos , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Reprodutibilidade dos Testes
19.
Acad Radiol ; 26(3): 355-366, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30522808

RESUMO

RATIONALE AND OBJECTIVES: Hyperpolarized xenon-129 magnetic resonance (MR) provides sensitive tools that may detect early stages of lung disease in smokers before it has progressed to chronic obstructive pulmonary disease (COPD) apparent to conventional spirometric measures. We hypothesized that the functional alveolar wall thickness as assessed by hyperpolarized xenon-129 MR spectroscopy would be elevated in clinically healthy smokers before xenon MR diffusion measurements would indicate emphysematous tissue destruction. MATERIALS AND METHODS: Using hyperpolarized xenon-129 MR we measured the functional septal wall thickness and apparent diffusion coefficient of the gas phase in 16 subjects with smoking-related COPD, 9 clinically healthy current or former smokers, and 10 healthy never smokers. All subjects were age-matched and characterized by conventional pulmonary function tests. A total of 11 data sets from younger healthy never smokers were added to determine the age dependence of the septal wall thickness measurements. RESULTS: In healthy never smokers the septal wall thickness increased by 0.04 µm per year of age. The healthy smoker cohort exhibited normal pulmonary function test measures that did not significantly differ from the never-smoker cohort. The age-corrected septal wall thickness correlated well with diffusion capacity for carbon monoxide (R2 = 0.56) and showed a highly significant difference between healthy subjects and COPD patients (8.8 µm vs 12.3 µm; p < 0.001), but was the only measure that actually discriminated healthy subjects from healthy smokers (8.8 µm vs 10.6 µm; p < 0.006). CONCLUSION: Functional alveolar wall thickness assessed by hyperpolarized xenon-129 MR allows discrimination between healthy subjects and healthy smokers and could become a powerful new measure of early-stage lung disease.


Assuntos
Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Alvéolos Pulmonares/patologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Adulto , Idoso , Estudos de Casos e Controles , Diagnóstico Precoce , Feminino , Humanos , Pulmão/fisiologia , Masculino , Pessoa de Meia-Idade , não Fumantes , Alvéolos Pulmonares/diagnóstico por imagem , Capacidade de Difusão Pulmonar , Fumantes , Fumar/fisiopatologia , Isótopos de Xenônio , Adulto Jovem
20.
Magn Reson Med ; 81(3): 1784-1794, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30346083

RESUMO

PURPOSE: To investigate the feasibility of describing the impact of any flip angle-TR combination on the resulting distribution of the hyperpolarized xenon-129 (HXe) dissolved-phase magnetization in the chest using a single virtual parameter, TR90°,equiv . METHODS: HXe MRI scans with simultaneous gas- (GP) and dissolved-phase (DP) excitation were performed using 2D projection scans in mechanically ventilated rabbits. Measurements with DP flip angles ranging from 6-90° and TRs ranging from 8.3-500 ms were conducted. DP maps based on acquisitions of similar radio frequency pulse-induced relaxation rates were compared. RESULTS: The observed distribution of the DP magnetization was strongly affected by acquisition flip angle and TR. However, for flip angles up to 60°, measurements with the same radio frequency pulse-induced relaxation rates, resulted in very similar DP images despite the presence of significant macroscopic gas transport processes. For flip angles approaching 90°, the downstream signal component decreased noticeably relative to acquisitions with lower flip angles. Nevertheless, the total DP signal continued to follow an empirically verified conversion equation over the entire investigated parameter range, which yields the equivalent TR of a hypothetical 90° measurement for any experimental flip angle-TR combination. CONCLUSION: We have introduced a method for converting the flip angle and TR of a given HXe DP measurement to a standardized metric based on the virtual quantity, TR90°,equiv , using their equivalent RF relaxation rates. This conversion permits the comparison of measurements obtained with different pulse sequence types or by different research groups using various acquisition parameters.


Assuntos
Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Isótopos de Xenônio/química , Algoritmos , Animais , Calibragem , Simulação por Computador , Estudos de Viabilidade , Ventrículos do Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Magnetismo , Imagens de Fantasmas , Circulação Pulmonar , Coelhos , Respiração Artificial , Imagem Corporal Total/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...