Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(2): 2832-2842, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36598862

RESUMO

The solid electrolyte interface/interphase (SEI) is of great importance to the viable operation of lithium-ion batteries. In the present work, the interface between a tungsten oxide electrode and an electrolyte solution consisting of LiPF6 in a deuterated ethylene carbonate/diethyl carbonate solvent was characterized with in situ neutron reflectometry (NR) at a series of applied electrochemical potentials. NR data were fit to yield neutron scattering length density (SLD) depth profiles in the surface normal direction, from which composition depth profiles were inferred. The goals of this work were to characterize SEI formation on a model transition-metal oxide, an example of a conversion electrode, to characterize the lithiation of WO3, and to help interpret the results of an earlier study of tungsten electrodes without an intentionally grown surface oxide. The WO3 electrode was produced by thermal oxidation of a W thin film. Co-analysis of NR and X-ray reflectivity data indicated that the stoichiometry of the thermal oxide was WO3. As the electrode was polarized to progressively more reducing potentials, starting from open circuit and down to +0.25 V versus Li/Li+, the layer that was originally WO3 expanded and increased in lithium content. The reduced electrode consisted of two to three layers: an inner layer (the evolving conversion electrode) which may have been mixed W and Li2O and unreacted WO3 or LixWO3, a layer rich in protons and/or lithium, possibly corresponding to LiOH or LiH (the inner SEI), and an outermost layer adjacent to the solution with an SLD close to that of the solution, possibly consisting of lower SLD species with solution-filled porosity or deuteron-rich species derived from the solvents (the outer SEI), though the presence of this layer was tenuous. For the steps in the direction of more oxidizing potentials, the evolution of the layer structure was qualitatively the reverse of that seen when stepping toward more negative potentials, though with hysteresis. The SLD gradient suggested that the reaction was not limited by diffusion within the film. No clear phase boundary was evident in the evolving conversion electrode.

2.
Chemphyschem ; 22(13): 1397-1406, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33831274

RESUMO

The hydroxide ion concentration dependence of the methanol oxidation reaction at Pt was studied using microelectrode voltammetry and rotating disk electrode voltammetry. Both methods suggest that the rate of methanol oxidation is limited by hydroxide mass transport at low hydroxide concentrations, while it is inhibited by hydroxide adsorption at high concentrations. It was possible to shift from the transport-limited regime to the inhibitory regime by varying the bulk concentration of hydroxide or by varying mass transport to the electrode. Rotating ring-disk electrode voltammetry was employed to qualitatively assess changes in the diffusion layer pH. The results indicated a decrease in the surface pH during methanol oxidation, as expected, but also that the pH reached a steady state during hydroxide transport limited methanol oxidation.

3.
ACS Appl Mater Interfaces ; 13(8): 9919-9931, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33616383

RESUMO

Electrode-electrolyte interfaces (EEIs) affect the rate capability, cycling stability, and thermal safety of lithium-ion batteries (LIBs). Designing stable EEIs with fast Li+ transport is crucial for developing advanced LIBs. Here, we study Li+ kinetics at EEIs tailored by three nanoscale polymer thin films via chemical vapor deposition (CVD) polymerization. Small binding energy with Li+ and the presence of sufficient binding sites for Li+ allow poly(3,4-ethylenedioxythiophene) (PEDOT) based artificial coatings to enable fast charging of LiCoO2. Operando synchrotron X-ray diffraction experiments suggest that the superior Li+ transport property in PEDOT further improves current homogeneity in the LiCoO2 electrode during cycling. PEDOT also forms chemical bonds with LiCoO2, which reduces Co dissolution and inhibits electrolyte decomposition. As a result, the LiCoO2 4.5 V cycle life tested at C/2 increases over 1700% after PEDOT coating. In comparison, the other two polymer coatings show undesirable effects on LiCoO2 performance. These insights provide us with rules for selecting/designing polymers to engineer EEIs in advanced LIBs.

4.
ACS Appl Mater Interfaces ; 11(50): 47553-47563, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31815415

RESUMO

Tungsten, a non-Li-intercalating material, was used as a platform to study solid-electrolyte interface/interphase (SEI) formation in lithium hexafluorphosphate in mixed diethyl carbonate (DEC)/ethylene carbonate electrolyte solutions using in situ neutron reflectometry (NR). A NR measurement determines the neutron scattering length density (SLD)-depth profile, from which a composition-depth profile can be inferred. Isotopic labeling/contrast variation measurements were conducted using a series of three electrolyte solutions: one with both solvents deuterated, one with neither deuterated, and another with only DEC deuterated. A two-layer SEI formed upon polarization to +0.25 V vs Li/Li+. Insensitivity of the inner SEI layer to solvent deuteration suggested limited incorporation of hydrogen atoms from the solvent molecules. Its low SLD indicates that Li2O could be a major constituent. The outer SEI layer SLD scaled with that of the solution, indicating that it either had solution-filled porosity, incorporated hydrogen atoms from the solvent, or both. Returning the electrode to +2.65 V removed lithium from both surface layers, though the effect was more pronounced for the inner layer. Potential cycling had the effect of increasing the solution-derived species content in the inner SEI and decreased the contrast between the inner and outer layers, possibly indicating intermixing of the layers.

5.
Nat Commun ; 7: 11941, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27336795

RESUMO

Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd-Co-Cu lattice and distributes uniformly within the particles. The uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications.

6.
Anal Chem ; 86(13): 6197-201, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24845246

RESUMO

A three-electrode differential electrochemical mass spectrometry (DEMS) cell has been developed to study the oxidative decomposition of electrolytes at high voltage cathode materials of Li-ion batteries. In this DEMS cell, the working electrode used was the same as the cathode electrode in real Li-ion batteries, i.e., a lithium metal oxide deposited on a porous aluminum foil current collector. A charged LiCoO2 or LiMn2O4 was used as the reference electrode, because of their insensitivity to air, when compared to lithium. A lithium sheet was used as the counter electrode. This DEMS cell closely approaches real Li-ion battery conditions, and thus the results obtained can be readily correlated with reactions occurring in real Li-ion batteries. Using DEMS, the oxidative stability of three electrolytes (1 M LiPF6 in EC/DEC, EC/DMC, and PC) at three cathode materials including LiCoO2, LiMn2O4, and LiNi(0.5)Mn(1.5)O4 were studied. We found that 1 M LiPF6 + EC/DMC electrolyte is quite stable up to 5.0 V, when LiNi(0.5)Mn(1.5)O4 is used as the cathode material. The EC/DMC solvent mixture was found to be the most stable for the three cathode materials, while EC/DEC was the least stable. The oxidative decomposition of the EC/DEC mixture solvent could be readily observed under operating conditions in our cell even at potentials as low as 4.4 V in 1 M LiPF6 + EC/DEC electrolyte on a LiCoO2 cathode, as indicated by CO2 and O2 evolution. The features of this DEMS cell to unveil solvent and electrolyte decomposition pathways are also described.

7.
J Am Chem Soc ; 136(14): 5309-22, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24588487

RESUMO

A strategy has been devised to study the incorporation and exchange of anions in a candidate alkaline anion exchange membrane (AAEM) material for alkaline fuel cells using the electrochemical quartz crystal microbalance (EQCM) technique. It involves the electro-oxidation of methanol (CH3OH) under alkaline conditions to generate carbonate (CO3(2-)) and formate (HCOO(-)) ions at the electrode of a quartz crystal resonator coated with an AAEM film, while simultaneously monitoring changes in the frequency (Δf) and the motional resistance (ΔR(m)) of the resonator. A decrease in Δf, indicating an apparent mass increase in the film, and a decrease in ΔR(m), signifying a deswelling of the film, were observed during methanol oxidation. A series of additional QCM experiments, in which the effects of CH3OH, CO3(2-), and HCOO(-) were individually examined by changing the solution concentration of these species, confirmed the changes to be due to the incorporation of electrogenerated CO3(2-)/HCOO(-) into the film. Furthermore, the AAEM films were found to have finite anion uptake, validating the expected tolerance of the material to salt precipitation in the AAEM. The EQCM results obtained indicated that HCOO(-) and CO3(2-), in particular, interact strongly with the AAEM film and readily displace OH(-) from the film. Notwithstanding, the anion exchange between CO3(2-)/HCOO(-) and OH(-) was found to be reversible. It is also inferred that the film exhibits increased swelling in the OH(-) form versus the CO3(2-)/HCOO(-) form. Acoustic impedance analysis of the AAEM-film coated quartz resonators immersed in water showed that the hydrated AAEM material exhibits significant viscoelastic effects due to solvent plasticization.

8.
Rev Sci Instrum ; 84(2): 024101, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23464226

RESUMO

A combined scanning differential electrochemical mass spectrometer (SDEMS)-scanning electrochemical microscope (SECM) apparatus is described. The SDEMS is used to detect and spatially resolve volatile electrochemically generated species at the surface of a substrate electrode. The SECM can electrochemically probe the reactivity of the surface and also offers a convenient means of leveling the sample. It is possible to switch between these two different scanning tips and techniques without moving the sample and while maintaining potential control of the substrate electrode. A procedure for calibration of the SDEMS tip-substrate separation, based upon the transit time of electrogenerated species from the substrate to the tip is also described. This instrument can be used in the characterization of combinatorial libraries of direct alcohol fuel cell anode catalysts. The apparatus was used to analyze the products of methanol oxidation at a Pt substrate, with the SDEMS detecting carbon dioxide and methyl formate, and a PtPb-modified Pt SECM tip used for the selective detection of formic acid. As an example system, the electrocatalytic methanol oxidation activity of a sputter-deposited binary PtRu composition spread in acidic media was analyzed using the SDEMS. These results are compared with those obtained from a pH-sensitive fluorescence assay.

9.
Nano Lett ; 12(9): 4417-23, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22201229

RESUMO

We present an electron tomography method that allows for the identification of hundreds of electrocatalyst nanoparticles with one-to-one correspondence before and after electrochemical aging. This method allows us to track, in three-dimensions, the trajectories and morphologies of each Pt-Co nanocatalyst on a fuel cell carbon support. In conjunction with the use of atomic-scale electron energy loss spectroscopic imaging, our experiment enables the correlation of performance degradation of the catalyst with changes in particle/interparticle morphologies, particle-support interactions, and the near-surface chemical composition. We found that aging of the catalysts under normal fuel cell operating conditions (potential scans from +0.6 to +1.0 V for 30,000 cycles) gives rise to coarsening of the nanoparticles, mainly through coalescence, which in turn leads to the loss of performance. The observed coalescence events were found to be the result of nanoparticle migration on the carbon support during potential cycling. This method provides detailed insights into how nanocatalyst degradation occurs in proton exchange membrane fuel cells (PEMFCs) and suggests that minimization of particle movement can potentially slow down the coarsening of the particles and the corresponding performance degradation.


Assuntos
Cobalto/química , Fontes de Energia Elétrica , Eletroquímica/métodos , Tomografia com Microscopia Eletrônica/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Platina/química , Catálise , Cobalto/análise , Imageamento Tridimensional , Teste de Materiais/métodos , Tamanho da Partícula , Platina/análise
10.
J Am Chem Soc ; 132(50): 17664-6, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21105661

RESUMO

A simple method for the preparation of PdCo@Pd core-shell nanoparticles supported on carbon based on an adsorbate-induced surface segregation effect has been developed. The stability of these PdCo@Pd nanoparticles and their electrocatalytic activity for the oxygen reduction reaction (ORR) were enhanced by decoration with a small amount of Pt deposited via a spontaneous displacement reaction. The facile method described herein is suitable for large-scale, lower-cost production and significantly lowers the Pt loading and thus the cost. The as-prepared PdCo@Pd and Pd-decorated PdCo@Pd nanocatalysts have a higher methanol tolerance than Pt/C in the ORR and are promising cathode catalysts for fuel cell applications.

11.
J Am Chem Soc ; 132(30): 10218-20, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20662494

RESUMO

The current materials used in proton-exchange membrane fuel cells (PEMFCs) are not sufficiently durable for commercial deployment. One of the major challenges lies in the development of an inexpensive, efficient, and CO-tolerant anode catalyst. Here we report the unique CO-tolerant property of Pt nanoparticles supported on Ti(0.7)W(0.3)O(2). The Ti(0.7)W(0.3)O(2) nanoparticles (50 nm) were synthesized via a sol-gel process and platinized using an impregnation-reduction technique. Electrochemical studies of Pt/Ti(0.7)W(0.3)O(2) show unique CO-tolerant electrocatalytic activity for hydrogen oxidation compared to commercial E-TEK PtRu/C catalysts. Differential electrochemical mass spectrometry measurements show the onset potential for CO oxidation on Pt/Ti(0.7)W(0.3)O(2) to be below 0.1 V (vs RHE). Pt/Ti(0.7)W(0.3)O(2) is a promising new anode catalyst for PEMFC applications.

12.
Anal Chem ; 82(11): 4319-24, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20459058

RESUMO

We present a new double-band-electrode channel flow DEMS (differential electrochemical mass spectrometry) cell and demonstrate its application in mechanistic studies with particular relevance to fuel cells. The cell is composed of two band electrodes, which serve as working and detecting electrodes, respectively, separated by a porous Teflon membrane. The Teflon membrane serves as the interface between the aqueous solution and vacuum, through which gases and volatile species can be transported. The hydrodynamic electrochemical characteristics and mass spectrometric behavior have been characterized. With this DEMS cell, gaseous and volatile electrochemical products formed at the working electrode are monitored by mass spectrometry, while nonvolatile products can be selectively detected at the detecting (downstream) electrode. Thus, this system can be considered as the DEMS analogue of a rotating ring/disk electrode. As test cases, the electrooxidation of formaldehyde and methanol on carbon supported Pt nanoparticle catalysts have been studied using this new channel flow DEMS cell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...