Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(36): 23823-23834, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39230259

RESUMO

The fascination with superheavy elements (SHE) spans the nuclear physics, astrophysics, and theoretical chemistry communities. Extreme relativistic effects govern these elements' chemistry and challenge the traditional notion of the periodic law. The experimental quest for SHE critically depends on theoretical predictions of these elements' properties, especially chemical homology, which allows for successful prototypical experiments with more readily available lighter homologues of SHE. This work is a comprehensive quantum-chemical investigation into astatine (At) as a non-intuitive homologue of element 113, nihonium (Nh). Combining relativistic coupled-cluster and density functional theory approaches, we model the behaviour of At and AtOH in thermochromatographic experiments on a pristine gold surface. Insights into the electronic structure of AtOH and NhOH and accurate estimates of At-gold and AtOH-gold adsorption energies rationalise recent experimental findings and justify the use of At as a chemical homologue of Nh for the successful design of future experiments on Nh detection and chemical characterisation.

2.
RSC Adv ; 14(35): 25120-25129, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39139244

RESUMO

Thiophene-containing heteroarenes are one of the most well-known classes of π-conjugated building blocks for photoactive molecules. Isomeric naphthodithiophenes (NDTs) are at the forefront of this research area due to their straightforward synthesis and derivatization. Notably, NDT geometries that are bent - such as naphtho[2,1-b:3,4-b']dithiophene (α-NDT) and naphtho[1,2-b:4,3-b']dithiophene (ß-NDT) - are seldom employed as photoactive small molecules. This report investigates how remote substituents impact the photophysical properties of isomeric α- and ß-NDTs. The orientation of the thiophene units plays a critical role in the emission: in the α(OHex)R2 series conjugation from the end-caps to the NDT core is apparent, while in the ß(Oi-Pent)R2 series minimal change is observed unless strong electron acceptors, such as ß(Oi-Pent)(PhCF3)2, are employed. This push-pull acceptor-donor-acceptor (A-D-A) fluorophore exhibits positive fluorosolvatochromism that correlates with increasing solvent polarity parameter, E T(30). In total, these results highlight how remote substituents are able to modulate the emission of isomeric bent NDTs.

3.
J Chem Theory Comput ; 19(22): 7998-8012, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38014419

RESUMO

Using the example of astatine, the heaviest naturally occurring halogen whose isotope At-211 has promising medical applications, we propose a new infrastructure for large-scale computational models of heavy elements with strong relativistic effects. In particular, we focus on developing an accurate force field for At- in water based on reliable relativistic density functional theory (DFT) calculations. To ensure the reliability of such calculations, we design novel basis sets for relativistic DFT, via the particle swarm optimization algorithm to optimize the coefficients of the new basis sets and the polarization-consistent basis set idea's extension to heavy elements to eliminate the basis set error from DFT calculations. The resulting basis sets enable the well-grounded evaluation of relativistic DFT against "gold-standard" CCSD(T) results. Accounting for strong relativistic effects, including spin-orbit interaction, via our redesigned infrastructure, we elucidate a noticeable dissimilarity between At- and I- in halide-water force field parameters, radial distribution functions, diffusion coefficients, and hydration energies. This work establishes the framework for the systematic development of polarization-consistent basis sets for relativistic DFT and accurate force fields for molecular dynamics simulations to be used in large-scale models of complex molecular systems with elements from the bottom of the periodic table, including actinides and even superheavy elements.

5.
J Phys Chem A ; 127(1): 46-56, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36538020

RESUMO

We present a systematic study of electron-correlation and relativistic effects in diatomic molecular species of the heaviest halogen astatine (At) within relativistic single- and multireference coupled-cluster approaches and relativistic density functional theory. We establish revised reference ab initio data for the ground states of At2, HAt, AtAu, and AtO+ using a highly accurate relativistic effective core potential model and in-house basis sets developed for accurate modeling of molecules with large spin-orbit effects. Spin-dependent relativistic effects on chemical bonding in the ground state are comparable to the binding energy or even exceed it in At2. Electron-correlation effects near the equilibrium internuclear separation are mostly dynamical and can be adequately captured using single-reference CCSD(T). However, bond elongation in At2 and, especially, AtO+ results in rapid manifestation of its multireference character. While useful for evaluating the spin-orbit effects on the ground-state bonding and properties, the two-component density functional theory lacks predictive power, especially in combination with popular empirically adjusted exchange-correlation functionals. This drawback supports the necessity to develop new functionals for reliable quantum-chemical models of heavy-element compounds with strong relativistic effects.

6.
J Chem Theory Comput ; 15(1): 229-240, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30540474

RESUMO

We present an implementation of the self-energy embedding theory (SEET) for periodic systems and provide a fully self-consistent embedding solution for a simple realistic periodic problem-one-dimensional (1D) crystalline hydrogen-that displays many of the features present in complex real materials. For this system, we observe a remarkable agreement between our finite-temperature periodic implementation results and well-established and accurate zero-temperature auxiliary quantum Monte Carlo data extrapolated to thermodynamic limit. We discuss differences and similarities with other Green's function embedding methods and provide the detailed algorithmic steps crucial for highly accurate and reproducible results.

7.
J Chem Phys ; 145(20): 204106, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27908130

RESUMO

Including finite-temperature effects from the electronic degrees of freedom in electronic structure calculations of semiconductors and metals is desired; however, in practice it remains exceedingly difficult when using zero-temperature methods, since these methods require an explicit evaluation of multiple excited states in order to account for any finite-temperature effects. Using a Matsubara Green's function formalism remains a viable alternative, since in this formalism it is easier to include thermal effects and to connect the dynamic quantities such as the self-energy with static thermodynamic quantities such as the Helmholtz energy, entropy, and internal energy. However, despite the promising properties of this formalism, little is known about the multiple solutions of the non-linear equations present in the self-consistent Matsubara formalism and only a few cases involving a full Coulomb Hamiltonian were investigated in the past. Here, to shed some light onto the iterative nature of the Green's function solutions, we self-consistently evaluate the thermodynamic quantities for a one-dimensional (1D) hydrogen solid at various interatomic separations and temperatures using the self-energy approximated to second-order (GF2). At many points in the phase diagram of this system, multiple phases such as a metal and an insulator exist, and we are able to determine the most stable phase from the analysis of Helmholtz energies. Additionally, we show the evolution of the spectrum of 1D boron nitride to demonstrate that GF2 is capable of qualitatively describing the temperature effects influencing the size of the band gap.

8.
J Chem Phys ; 144(5): 054106, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26851907

RESUMO

Despite recent advances, systematic quantitative treatment of the electron correlation problem in extended systems remains a formidable task. Systematically improvable Green's function methods capable of quantitatively describing weak and at least qualitatively strong correlations appear as promising candidates for computational treatment of periodic systems. We present a periodic implementation of temperature-dependent self-consistent 2nd-order Green's function (GF2) method, where the self-energy is evaluated in the basis of atomic orbitals. Evaluating the real-space self-energy in atomic orbitals and solving the Dyson equation in k-space are the key components of a computationally feasible algorithm. We apply this technique to the one-dimensional hydrogen lattice--a prototypical crystalline system with a realistic Hamiltonian. By analyzing the behavior of the spectral functions, natural occupations, and self-energies, we claim that GF2 is able to recover metallic, band insulating, and at least qualitatively Mott regimes. We observe that the iterative nature of GF2 is essential to the emergence of the metallic and Mott phases.

9.
J Chem Phys ; 141(19): 194105, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25416872

RESUMO

Embedding calculations that find approximate solutions to the Schrödinger equation for large molecules and realistic solids are performed commonly in a three step procedure involving (i) construction of a model system with effective interactions approximating the low energy physics of the initial realistic system, (ii) mapping the model system onto an impurity Hamiltonian, and (iii) solving the impurity problem. We have developed a novel procedure for parametrizing the impurity Hamiltonian that avoids the mathematically uncontrolled step of constructing the low energy model system. Instead, the impurity Hamiltonian is immediately parametrized to recover the self-energy of the realistic system in the limit of high frequencies or short time. The effective interactions parametrizing the fictitious impurity Hamiltonian are local to the embedded regions, and include all the non-local interactions present in the original realistic Hamiltonian in an implicit way. We show that this impurity Hamiltonian can lead to excellent total energies and self-energies that approximate the quantities of the initial realistic system very well. Moreover, we show that as long as the effective impurity Hamiltonian parametrization is designed to recover the self-energy of the initial realistic system for high frequencies, we can expect a good total energy and self-energy. Finally, we propose two practical ways of evaluating effective integrals for parametrizing impurity models.

10.
J Chem Phys ; 139(11): 114110, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-24070282

RESUMO

Space group symmetry is exploited and implemented in density functional calculations of extended systems with periodic boundary conditions. Our scheme for reducing the number of two-electron integrals employs the entire set of operations of the space group, including glide plains and screw axes. Speedups observed for the Fock matrix formation in simple 3D systems range from 2X to 9X for the near field Coulomb part and from 3X to 8X for the Hartree-Fock-type exchange, the slowest steps of the procedure, thus leading to a substantial reduction of the computational time. The relatively small speedup factors in special cases are attributed to the highly symmetric positions atoms occupy in crystals, including the ones tested here, as well as to the choice of the smallest possible unit cells. For quasi-1D systems with most atoms staying invariant only under identity, the speedup factors often exceed one order of magnitude reaching almost 70X (near-field Coulomb) and 57X (HFx) for the largest tested (16,7) single-walled nanotube with 278 symmetry operations.

11.
J Phys Chem B ; 111(50): 13869-72, 2007 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-18031031

RESUMO

Calculating the enthalpy of formation of a polymer with ab initio methods requires two choices. The first decision is whether to use oligomeric extrapolation or periodic boundary conditions to model the extended system, and the second choice is between formation reactions to be modeled, for example, formation from atoms, formation from standard states, or formation from some set of molecular systems. Utilizing trans-polyacetylene and polyethylene as examples, the oligomeric and periodic techniques are contrasted, leading to a discussion of the larger than minimal unit cell required when frequency calculations only include in-phase vibrations, that is, only the k = 0 frequencies, in an enthalpy of formation calculation. The accuracy of calculating the enthalpy of formation, in light of density functional theory's increased error with larger systems and with respect to various reference states, is also discussed. The calculation of the enthalpy of formation for a polymer is most accurate when the reference states are chosen carefully and most efficient when using periodic boundary conditions.

12.
J Chem Phys ; 127(16): 164322, 2007 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-17979353

RESUMO

Two-component relativistic density functional theory combined with high-level ab initio correlation techniques was applied to the study of the electronic structure and isomerism of Au(3). All calculations were performed with accurate small-core shape-consistent relativistic pseudopotentials. Density functional theory was used to determine the equilibrium structures of the Au(3) isomers and isomerization path and to estimate the contributions of spin-orbit effects to the ground state electronic energy along the path. The reliability of these estimates was verified through independent many-body multipartitioning perturbation theory calculations. Spin-orbit corrections were used to refine the isomerization energy profile computed by spin-orbit-free coupled cluster methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA