Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 75(5-6): 1281-1293, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28333045

RESUMO

Manure represents an exquisite mining opportunity for nutrient recovery (nitrogen and phosphorus), and for their reuse as renewable fertilisers. The ManureEcoMine proposes an integrated approach of technologies, operated in a pilot-scale installation treating swine manure (83.7%) and Ecofrit® (16.3%), a mix of vegetable residues. Thermophilic anaerobic digestion was performed for 150 days, the final organic loading rate was 4.6 kgCOD m-3 d-1, with a biogas production rate of 1.4 Nm3 m-3 d-1. The digester was coupled to an ammonia side-stream stripping column and a scrubbing unit for free ammonia inhibition reduction in the digester, and nitrogen recovery as ammonium sulphate. The stripped digestate was recirculated daily in the digester for 15 days (68% of the digester volume), increasing the gas production rate by 27%. Following a decanter centrifuge, the digestate liquid fraction was treated with an ultrafiltration membrane. The filtrate was fed into a struvite reactor, with a phosphorus recovery efficiency of 83% (as orthophosphate). Acidification of digestate could increment the soluble orthophosphate concentration up to four times, enhancing phosphorus enrichment in the liquid fraction and its recovery via struvite. A synergistic combination of manure processing steps was demonstrated to be technologically feasible to upgrade livestock waste into refined, concentrated fertilisers.


Assuntos
Gado , Esterco/análise , Compostos Orgânicos/análise , Gerenciamento de Resíduos/métodos , Resíduos/análise , Ácidos/química , Amônia/análise , Compostos de Amônio/análise , Anaerobiose , Animais , Centrifugação , Precipitação Química , Membranas Artificiais , Nitrogênio/análise , Permeabilidade , Fósforo/análise , Projetos Piloto , Estruvita/química , Suínos , Temperatura , Ultrafiltração
2.
Chemosphere ; 117: 271-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25113993

RESUMO

Anaerobic ammonium oxidation (anammox) is a cost-effective process to treat high-strength nitrogenous wastewater. Even without organic carbon input, the effluent contains bioproducts from autotrophic and heterotrophic bacteria. In this work, excitation-emission matrix (EEM) fluorescence spectroscopy was used to characterize the effluent dissolved organic matter (EfOM) from an anammox reactor treating synthetic wastewater. Two dominant EEM components were identified as humic acid-like (component 1) and protein-like (component 2) substances with excitation/emission peaks at <240, 355, 420/464 nm and <240, 280, 330/346 nm, respectively. The presence of both compounds in the effluent was tracked during an activity recovery period (nitrogen load increased from 0.2 to 1.3 kg Nm(-3)d(-1)). The effluent concentration of both components increased during this period, indicating correlation between production and bacterial activity. The dynamics of these bioproducts during both substrate consumption and starvation phases was analyzed in batch experiments. Component 1 was only formed during substrate consumption in a rate proportional to ammonium removal and was considered an up-take associated product characteristic of anammox activity. The results show that the composition of the EfOM was qualitatively and quantitatively influenced by process performance. Monitoring the EfOM could, therefore, offer a useful approach to assess anammox process performance and must be further explored.


Assuntos
Amônia/metabolismo , Substâncias Húmicas/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Anaerobiose , Biomassa , Reatores Biológicos , Análise Fatorial , Nitrogênio/análise , Oxirredução , Espectrometria de Fluorescência , Águas Residuárias/análise , Águas Residuárias/microbiologia
3.
Microb Biotechnol ; 7(1): 32-43, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24112350

RESUMO

Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long-term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real-time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB Nitrospira and Nitrobacter and a 10-fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Biota , Nitrogênio/metabolismo , Aerobiose , Compostos de Amônio/metabolismo , Fenômenos Fisiológicos Bacterianos , Análise por Conglomerados , Hibridização in Situ Fluorescente , Nitritos/metabolismo , Filogenia , Reação em Cadeia da Polimerase em Tempo Real
5.
Water Res ; 46(15): 4645-52, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22763288

RESUMO

Anaerobic ammonium oxidation (Anammox) is a cost-effective new process to treat high-strength nitrogenous wastewater. In this work, the microbial interactions of anaerobic ammonium oxidizers and heterotrophs through the exchange of soluble microbial products (SMP) in Anammox biofilm and the affecting factors were evaluated with both experimental and modeling approaches. Fluorescent in situ hybridization (FISH) analysis illustrated that Anammox bacteria and heterotrophs accounted for 77% and 23% of the total bacteria, respectively, even without addition of an external carbon source. Experimental results showed the heterotrophs could grow both on SMP and decay released substrate from the metabolism of the Anammox bacteria. However, heterotrophic growth in Anammox biofilm (23%) was significantly lower than that of nitrifying biofilm (30-50%). The model predictions matched well with the experimental observations of the bacterial distribution, as well as the nitrogenous transformations in batch and continuous experiments. The modeling results showed that low nitrogen surface loading resulted in a lower availability of SMP leading to low heterotrophic growth in Anammox biofilm, but high nitrogen surface loading would lead to relative stable biomass fractions although the absolute heterotrophic growth increased. Meanwhile, increasing biofilm thickness increased heterotrophic growth but has little influence on the relative biomass fractions.


Assuntos
Bactérias/metabolismo , Biofilmes , Compostos de Amônio Quaternário/metabolismo , Anaerobiose , Bactérias/genética , Hibridização in Situ Fluorescente , Oxirredução
6.
Environ Sci Technol ; 45(18): 7768-76, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21780759

RESUMO

Nitrous oxide (N(2)O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N(2)O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N(2)O dynamics during both nitrification and denitrification in biological N removal. Six additional processes and three additional reactants, all involved in known biochemical reactions, have been added. The validity and applicability of the model is demonstrated by comparing simulations with experimental data on N(2)O production from four different mixed culture nitrification and denitrification reactor study reports. Modeling results confirm that hydroxylamine oxidation by ammonium oxidizers (AOB) occurs 10 times slower when NO(2)(-) participates as final electron acceptor compared to the oxic pathway. Among the four denitrification steps, the last one (N(2)O reduction to N(2)) seems to be inhibited first when O(2) is present. Overall, N(2)O production can account for 0.1-25% of the consumed N in different nitrification and denitrification systems, which can be well simulated by the proposed model. In conclusion, we provide a modeling structure, which adequately captures N(2)O dynamics in autotrophic nitrification and heterotrophic denitrification driven biological N removal processes and which can form the basis for ongoing refinements.


Assuntos
Poluentes Atmosféricos/metabolismo , Desnitrificação , Modelos Biológicos , Nitrificação , Óxido Nitroso/metabolismo , Eliminação de Resíduos Líquidos , Bactérias/metabolismo , Simulação por Computador , Hidroxilamina/metabolismo , Nitrogênio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Reprodutibilidade dos Testes , Purificação da Água
7.
Bioresour Technol ; 100(23): 5624-32, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19577465

RESUMO

The goal of this work was to demonstrate the feasibility of treating leachate with high ammonium concentrations using the SBR technology, as a preparative step for the treatment in an anammox reactor. The cycle was based on a step-feed strategy, alternating anoxic and aerobic conditions. Results of the study verified the viability of this process, treating an influent with concentration up to 5000 mg N-NH(4)(+) L(-1). An effluent with about 1500-2000 mg N-NH(4)(+) L(-1) and 2000-3000 mg N-NO(2)(-) L(-1) was achieved, presenting a nitrite to ammonium molar ratio close to the 1.32 required by the anammox. Furthermore, taking advantage of the biodegradable organic matter, the operational strategy allowed denitrifying about 200 mg N-NO(2)(-) L(-1). The extreme operational conditions during the long-term resulted on the selection of a sole AOB phylotype, identified by molecular techniques as Nitrosomonas sp. IWT514.


Assuntos
Reatores Biológicos , Biotecnologia/métodos , Compostos de Amônio Quaternário/química , Anaerobiose , Cidades , Concentração de Íons de Hidrogênio , Microbiologia , Modelos Químicos , Nitritos/química , Nitrosomonas/metabolismo , Projetos Piloto , Temperatura , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...