Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(4)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668645

RESUMO

Standard-sized autonomous vehicles have rapidly improved thanks to the breakthroughs of deep learning. However, scaling autonomous driving to mini-vehicles poses several challenges due to their limited on-board storage and computing capabilities. Moreover, autonomous systems lack robustness when deployed in dynamic environments where the underlying distribution is different from the distribution learned during training. To address these challenges, we propose a closed-loop learning flow for autonomous driving mini-vehicles that includes the target deployment environment in-the-loop. We leverage a family of compact and high-throughput tinyCNNs to control the mini-vehicle that learn by imitating a computer vision algorithm, i.e., the expert, in the target environment. Thus, the tinyCNNs, having only access to an on-board fast-rate linear camera, gain robustness to lighting conditions and improve over time. Moreover, we introduce an online predictor that can choose between different tinyCNN models at runtime-trading accuracy and latency-which minimises the inference's energy consumption by up to 3.2×. Finally, we leverage GAP8, a parallel ultra-low-power RISC-V-based micro-controller unit (MCU), to meet the real-time inference requirements. When running the family of tinyCNNs, our solution running on GAP8 outperforms any other implementation on the STM32L4 and NXP k64f (traditional single-core MCUs), reducing the latency by over 13× and the energy consumption by 92%.

2.
Philos Trans A Math Phys Eng Sci ; 378(2164): 20190155, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31865877

RESUMO

We present PULP-NN, an optimized computing library for a parallel ultra-low-power tightly coupled cluster of RISC-V processors. The key innovation in PULP-NN is a set of kernels for quantized neural network inference, targeting byte and sub-byte data types, down to INT-1, tuned for the recent trend toward aggressive quantization in deep neural network inference. The proposed library exploits both the digital signal processing extensions available in the PULP RISC-V processors and the cluster's parallelism, achieving up to 15.5 MACs/cycle on INT-8 and improving performance by up to 63 × with respect to a sequential implementation on a single RISC-V core implementing the baseline RV32IMC ISA. Using PULP-NN, a CIFAR-10 network on an octa-core cluster runs in 30 × and 19.6 × less clock cycles than the current state-of-the-art ARM CMSIS-NN library, running on STM32L4 and STM32H7 MCUs, respectively. The proposed library, when running on a GAP-8 processor, outperforms by 36.8 × and by 7.45 × the execution on energy efficient MCUs such as STM32L4 and high-end MCUs such as STM32H7 respectively, when operating at the maximum frequency. The energy efficiency on GAP-8 is 14.1 × higher than STM32L4 and 39.5 × higher than STM32H7, at the maximum efficiency operating point. This article is part of the theme issue 'Harmonizing energy-autonomous computing and intelligence'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...