Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39335491

RESUMO

BACKGROUND: Fibro-calcific aortic valve disease (FCAVD) is a progressive disorder characterized by the thickening and calcification of the aortic valve, eventually leading to aortic stenosis. Adiponectin and leptin, known for their anti-inflammatory and proinflammatory properties, respectively, have been implicated in cardiovascular diseases, but their associations with FCAVD are controversial. This meta-analysis aims to evaluate the relationships between adiponectin and leptin levels and FCAVD, particularly in patients with severe aortic stenosis (AS). METHODS: A systematic search was conducted across the PubMed, Scopus, and Web of Science databases to identify studies on adiponectin and leptin levels in FCAVD. The methodological quality of each study was assessed using the Newcastle-Ottawa Scale. Standardized mean differences (SMDs) and 95% confidence intervals (CIs) were calculated, and publication bias was evaluated using Egger's test and funnel plots. RESULTS: Out of 191 articles identified, 10 studies involving 2360 patients (989 with FCAVD and 1371 controls) were included. The analysis suggested trends in the associations of lower adiponectin levels (SMD = -0.143, 95% CI: -0.344, 0.057, p = 0.161) and higher leptin levels (SMD = 0.175, 95% CI: -0.045, 0.395, p = 0.119) with FCAVD. The association remained a trend for low adiponectin but showed a significant correlation with high leptin in severe AS patients (SMD = 0.29, 95% CI: 0.036, 0.543, p = 0.025). CONCLUSION: This meta-analysis indicates a potential association between elevated leptin levels and severe aortic stenosis, while the relationship with adiponectin levels remains inconclusive. These findings highlight the need for further and dedicated research to clarify the roles of these adipokines in the pathogenesis of FCAVD and their potential roles as biomarkers for disease progression.

2.
Front Pharmacol ; 15: 1426982, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148550

RESUMO

Aims: Thoracic aortic aneurysm (TAA) that progress to acute aortic dissection is often fatal and there is no pharmacological treatment that can reduce TAA progression. We aim to evaluate statins' effects on TAA growth rate and outcomes using a meta-analysis approach. Methods and results: A detailed search related to the effects of statins on TAA was conducted according to PRISMA guidelines. The analyses of statins' effects on TAA growth rate were performed on 4 studies (n = 1850), while the impact on outcomes was evaluated on 3 studies (n = 2,867). Patients under statin treatment showed a reduced TAA growth rate (difference in means = -0.36 cm/year; 95%CI: -0.64, -0.08; p = 0.013) when compared to controls, patients not taking statins. Regarding the outcomes (death, dissection, or rupture of the aorta, and the need for operative repair), statins exhibited a protective effect reducing the number of events (log odds ratio = -0.56; 95%CI: -1.06, -0.05; p = 0.030). In vitro, the anti-fibrotic effect of atorvastatin was tested on vascular smooth muscle cells (VMSC) isolated from patients with TAA. Our results highlighted that, in transforming growth factor beta 1 (TGF-ß1) pro-fibrotic condition, VSMC expressed a significant lower amount of collagen type I alpha 1 chain (COL1A1) when treated with atorvastatin (untreated = +2.66 ± 0.23 fold-change vs. treated = +1.63 ± 0.09 fold-change; p = 0.014). Conclusion: Statins show a protective effect on TAA growth rate and adverse outcomes in patients with TAA, possibly via their anti-fibrotic properties on VSMC. Given the current lack of effective drug treatments for TAA, we believe our findings highlight the need for more in-depth research to explore the potential benefits of statins in this context.

3.
Antioxidants (Basel) ; 13(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275636

RESUMO

Type 2 diabetes mellitus (T2DM) is a prevalent and complex metabolic disorder associated with various complications, including cardiovascular diseases. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) and glucagon-like peptide 1 receptor agonists (GLP1-RA) have emerged as novel therapeutic agents for T2DM, primarily aiming to reduce blood glucose levels. However, recent investigations have unveiled their multifaceted effects, extending beyond their glucose-lowering effect. SGLT2i operate by inhibiting the SGLT2 receptor in the kidneys, facilitating the excretion of glucose through urine, leading to reduced blood glucose levels, while GLP1-RA mimic the action of the GLP1 hormone, stimulating glucose-dependent insulin secretion from pancreatic islets. Both SGLT2i and GLP1-RA have shown remarkable benefits in reducing major cardiovascular events in patients with and without T2DM. This comprehensive review explores the expanding horizons of SGLT2i and GLP1-RA in improving cardiovascular health. It delves into the latest research, highlighting the effects of these drugs on heart physiology and metabolism. By elucidating their diverse mechanisms of action and emerging evidence, this review aims to recapitulate the potential of SGLT2i and GLP1-RA as therapeutic options for cardiovascular health beyond their traditional role in managing T2DM.

4.
Biology (Basel) ; 10(8)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34439990

RESUMO

A promising approach for the development of high-affinity tumor targeting ADCs is the use of engineered protein drugs, such as affibody molecules, which represent a valuable alternative to monoclonal antibodies (mAbs) in cancer-targeted therapy. We developed a method for a more efficient purification of the ZHER2:2891DCS affibody conjugated with the cytotoxic antimitotic agent auristatin E (MMAE), and its efficacy was tested in vitro on cell viability, proliferation, migration, and apoptosis. The effects of ZHER2:2891DCS-MMAE were compared with the clinically approved monoclonal antibody trastuzumab (Herceptin®). To demonstrate that ZHER2:2891DCS-MMAE can selectively target HER2 overexpressing tumor cells, we used three different cell lines: the human adenocarcinoma cell lines SK-BR-3 and ZR-75-1, both overexpressing HER2, and the triple-negative breast cancer cell line MDA-MB-231. MTT assay showed that ZHER2:2891DCS-MMAE induces a significant time-dependent toxic effect in SK-BR-3 cells. A 30% reduction of cell viability was already found after 10 min exposure at a concentration of 7 nM (IC50 of 80.2 nM). On the contrary, MDA-MB-231 cells, which express basal levels of HER2, were not affected by the conjugate. The cytotoxic effect of the ZHER2:2891DCS-MMAE was confirmed by measuring apoptosis by flow cytometry. In SK-BR-3 cells, increasing concentrations of conjugated affibody induced cell death starting from 10 min of treatment, with the strongest effect observed after 48 h. Overall, these results demonstrate that the ADC, formed by the anti-HER2 affibody conjugated to monomethyl auristatin E, efficiently interacts with high affinity with HER2 positive cancer cells in vitro, allowing the selective and specific delivery of the cytotoxic payload.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA