Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Microbe ; 5(4): e335-e344, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484748

RESUMO

BACKGROUND: The origin of novel SARS-CoV-2 spike sequences found in wastewater, without corresponding detection in clinical specimens, remains unclear. We sought to determine the origin of one such cryptic wastewater lineage by tracking and characterising its persistence and genomic evolution over time. METHODS: We first detected a cryptic lineage, WI-CL-001, in municipal wastewater in Wisconsin, USA, in January, 2022. To determine the source of WI-CL-001, we systematically sampled wastewater from targeted sub-sewershed lines and maintenance holes using compositing autosamplers. Viral concentrations in wastewater samples over time were measured by RT digital PCR. In addition to using metagenomic 12s rRNA sequencing to determine the virus's host species, we also sequenced SARS-CoV-2 spike receptor binding domains, and, where possible, whole viral genomes to identify and characterise the evolution of this lineage. FINDINGS: We traced WI-CL-001 to its source at a single commercial building. There we detected the cryptic lineage at concentrations as high as 2·7 × 109 genome copies per L. The majority of 12s rRNA sequences detected in wastewater leaving the identified source building were human. Additionally, we generated over 100 viral receptor binding domain and whole-genome sequences from wastewater samples containing the cryptic lineage collected over the 13 consecutive months this virus was detectable (January, 2022, to January, 2023). These sequences contained a combination of fixed nucleotide substitutions characteristic of Pango lineage B.1.234, which circulated in humans in Wisconsin at low levels from October, 2020, to February, 2021. Despite this, mutations in the spike gene and elsewhere resembled those subsequently found in omicron variants. INTERPRETATION: We propose that prolonged detection of WI-CL-001 in wastewater indicates persistent shedding of SARS-CoV-2 from a single human initially infected by an ancestral B.1.234 virus. The accumulation of convergent omicron-like mutations in WI-CL-001's ancestral B.1.234 genome probably reflects persistent infection and extensive within-host evolution. People who shed cryptic lineages could be an important source of highly divergent viruses that sporadically emerge and spread. FUNDING: The Rockefeller Foundation, Wisconsin Department of Health Services, Centers for Disease Control and Prevention, National Institute on Drug Abuse, and the Center for Research on Influenza Pathogenesis and Transmission.


Assuntos
COVID-19 , Águas Residuárias , Estados Unidos , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Centers for Disease Control and Prevention, U.S.
2.
PLoS Pathog ; 19(12): e1011688, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38153929

RESUMO

Deep sequencing of wastewater to detect SARS-CoV-2 has been used during the COVID-19 pandemic to monitor viral variants as they appear and circulate in communities. SARS-CoV-2 lineages of an unknown source that have not been detected in clinical samples, referred to as cryptic lineages, are sometimes repeatedly detected from specific locations. We have continued to detect one such lineage previously seen in a Missouri site. This cryptic lineage has continued to evolve, indicating continued selective pressure similar to that observed in Omicron lineages.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Águas Residuárias , COVID-19/epidemiologia , Missouri/epidemiologia , Pandemias
3.
PLoS Pathog ; 18(10): e1010636, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36240259

RESUMO

Wastewater-based epidemiology (WBE) is an effective way of tracking the appearance and spread of SARS-COV-2 lineages through communities. Beginning in early 2021, we implemented a targeted approach to amplify and sequence the receptor binding domain (RBD) of SARS-COV-2 to characterize viral lineages present in sewersheds. Over the course of 2021, we reproducibly detected multiple SARS-COV-2 RBD lineages that have never been observed in patient samples in 9 sewersheds located in 3 states in the USA. These cryptic lineages contained between 4 to 24 amino acid substitutions in the RBD and were observed intermittently in the sewersheds in which they were found for as long as 14 months. Many of the amino acid substitutions in these lineages occurred at residues also mutated in the Omicron variant of concern (VOC), often with the same substitutions. One of the sewersheds contained a lineage that appeared to be derived from the Alpha VOC, but the majority of the lineages appeared to be derived from pre-VOC SARS-COV-2 lineages. Specifically, several of the cryptic lineages from New York City appeared to be derived from a common ancestor that most likely diverged in early 2020. While the source of these cryptic lineages has not been resolved, it seems increasingly likely that they were derived from long-term patient infections or animal reservoirs. Our findings demonstrate that SARS-COV-2 genetic diversity is greater than what is commonly observed through routine SARS-CoV-2 surveillance. Wastewater sampling may more fully capture SARS-CoV-2 genetic diversity than patient sampling and could reveal new VOCs before they emerge in the wider human population.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , SARS-CoV-2/genética , Águas Residuárias , COVID-19/epidemiologia , Variação Genética
4.
Nat Commun ; 13(1): 4717, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953484

RESUMO

Two years after the emergence of SARS-CoV-2, there is still a need for better ways to assess the risk of transmission in congregate spaces. We deployed active air samplers to monitor the presence of SARS-CoV-2 in real-world settings across communities in the Upper Midwestern states of Wisconsin and Minnesota. Over 29 weeks, we collected 527 air samples from 15 congregate settings. We detected 106 samples that were positive for SARS-CoV-2 viral RNA, demonstrating that SARS-CoV-2 can be detected in continuous air samples collected from a variety of real-world settings. We expanded the utility of air surveillance to test for 40 other respiratory pathogens. Surveillance data revealed differences in timing and location of SARS-CoV-2 and influenza A virus detection. In addition, we obtained SARS-CoV-2 genome sequences from air samples to identify variant lineages. Collectively, this shows air sampling is a scalable, high throughput surveillance tool that could be used in conjunction with other methods for detecting respiratory pathogens in congregate settings.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , Minnesota/epidemiologia , RNA Viral/genética , SARS-CoV-2/genética , Wisconsin/epidemiologia
5.
Water Res ; 221: 118824, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35830746

RESUMO

Recent SARS-CoV-2 wastewater-based epidemiology (WBE) surveillance have documented a positive correlation between the number of COVID-19 patients in a sewershed and the level of viral genetic material in the wastewater. Efforts have been made to use the wastewater SARS-CoV-2 viral load to predict the infected population within each sewershed using a multivariable regression approach. However, reported clear and sustained variability in SARS-CoV-2 viral load among treatment facilities receiving industrial wastewater have made clinical prediction challenging. Several classes of molecules released by regional industries and manufacturing facilities, particularly the food processing industry, can significantly suppress the SARS-CoV-2 signals in wastewater by breaking down the lipid-bilayer of the membranes. Therefore, a systematic ranking process in conjugation with metabolomic analysis was developed to identify the wastewater treatment facilities exhibiting SARS-CoV-2 suppression and identify and quantify the chemicals suppressing the SARS-COV-2 signals. By ranking the viral load per diagnosed case among the sewersheds, we successfully identified the wastewater treatment facilities in Missouri, USA that exhibit SARS-CoV-2 suppression (significantly lower than 5 × 1011 gene copies/reported case) and determined their suppression rates. Through both untargeted global chemical profiling and targeted analysis of wastewater samples, 40 compounds were identified as candidates of SARS-CoV-2 signal suppressors. Among these compounds, 14 had higher concentrations in wastewater treatment facilities that exhibited SARS-CoV-2 signal suppression compared to the unsuppressed control facilities. Stepwise regression analyses indicated that 4-nonylphenol, palmitelaidic acid, sodium oleate, and polyethylene glycol dioleate are positively correlated with SARS-CoV-2 signal suppression rates. Suppression activities were further confirmed by incubation studies, and the suppression kinetics for each bioactive compound were determined. According to the results of these experiments, bioactive molecules in wastewater can significantly reduce the stability of SARS-CoV-2 genetic marker signals. Based on the concentrations of these chemical suppressors, a correction factor could be developed to achieve more reliable and unbiased surveillance results for wastewater treatment facilities that receive wastewater from similar industries.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , RNA Viral , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
6.
medRxiv ; 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35677072

RESUMO

Wastewater-based epidemiology (WBE) is an effective way of tracking the appearance and spread of SARS-COV-2 lineages through communities. Beginning in early 2021, we implemented a targeted approach to amplify and sequence the receptor binding domain (RBD) of SARS-COV-2 to characterize viral lineages present in sewersheds. Over the course of 2021, we reproducibly detected multiple SARS-COV-2 RBD lineages that have never been observed in patient samples in 9 sewersheds located in 3 states in the USA. These cryptic lineages contained between 4 to 24 amino acid substitutions in the RBD and were observed intermittently in the sewersheds in which they were found for as long as 14 months. Many of the amino acid substitutions in these lineages occurred at residues also mutated in the Omicron variant of concern (VOC), often with the same substitution. One of the sewersheds contained a lineage that appeared to be derived from the Alpha VOC, but the majority of the lineages appeared to be derived from pre-VOC SARS-COV-2 lineages. Specifically, several of the cryptic lineages from New York City appeared to be derived from a common ancestor that most likely diverged in early 2020. While the source of these cryptic lineages has not been resolved, it seems increasingly likely that they were derived from immunocompromised patients or animal reservoirs. Our findings demonstrate that SARS-COV-2 genetic diversity is greater than what is commonly observed through routine SARS-CoV-2 surveillance. Wastewater sampling may more fully capture SARS-CoV-2 genetic diversity than patient sampling and could reveal new VOCs before they emerge in the wider human population. Author Summary: During the COVID-19 pandemic, wastewater-based epidemiology has become an effective public health tool. Because many infected individuals shed SARS-CoV-2 in feces, wastewater has been monitored to reveal infection trends in the sewersheds from which the samples were derived. Here we report novel SARS-CoV-2 lineages in wastewater samples obtained from 3 different states in the USA. These lineages appeared in specific sewersheds intermittently over periods of up to 14 months, but generally have not been detected beyond the sewersheds in which they were initially found. Many of these lineages may have diverged in early 2020. Although these lineages share considerable overlap with each other, they have never been observed in patients anywhere in the world. While the wastewater lineages have similarities with lineages observed in long-term infections of immunocompromised patients, animal reservoirs cannot be ruled out as a potential source.

7.
medRxiv ; 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35378751

RESUMO

Two years after the emergence of SARS-CoV-2, there is still a need for better ways to assess the risk of transmission in congregate spaces. We deployed active air samplers to monitor the presence of SARS-CoV-2 in real-world settings across communities in the Upper Midwestern states of Wisconsin and Minnesota. Over 29 weeks, we collected 527 air samples from 15 congregate settings and detected 106 SARS-CoV-2 positive samples, demonstrating SARS-CoV-2 can be detected in air collected from daily and weekly sampling intervals. We expanded the utility of air surveillance to test for 40 other respiratory pathogens. Surveillance data revealed differences in timing and location of SARS-CoV-2 and influenza A virus detection in the community. In addition, we obtained SARS-CoV-2 genome sequences from air samples to identify variant lineages. Collectively, this shows air surveillance is a scalable, cost-effective, and high throughput alternative to individual testing for detecting respiratory pathogens in congregate settings.

9.
Nat Commun ; 13(1): 635, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115523

RESUMO

Tracking SARS-CoV-2 genetic diversity is strongly indicated because diversifying selection may lead to the emergence of novel variants resistant to naturally acquired or vaccine-induced immunity. To monitor New York City (NYC) for the presence of novel variants, we deep sequence most of the receptor binding domain coding sequence of the S protein of SARS-CoV-2 isolated from the New York City wastewater. Here we report detecting increasing frequencies of novel cryptic SARS-CoV-2 lineages not recognized in GISAID's EpiCoV database. These lineages contain mutations that had been rarely observed in clinical samples, including Q493K, Q498Y, E484A, and T572N and share many mutations with the Omicron variant of concern. Some of these mutations expand the tropism of SARS-CoV-2 pseudoviruses by allowing infection of cells expressing the human, mouse, or rat ACE2 receptor. Finally, pseudoviruses containing the spike amino acid sequence of these lineages were resistant to different classes of receptor binding domain neutralizing monoclonal antibodies. We offer several hypotheses for the anomalous presence of these lineages, including the possibility that these lineages are derived from unsampled human COVID-19 infections or that they indicate the presence of a non-human animal reservoir.


Assuntos
SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Águas Residuárias/virologia , Microbiologia da Água , Adulto , Idoso , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/virologia , Feminino , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Cidade de Nova Iorque , Ligação Proteica , Ratos , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto Jovem
10.
Plant Dis ; 106(1): 46-56, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34569825

RESUMO

Many Pythium spp. are causal agents of diseases of turfgrasses. Pythium spp. disseminate through irrigation systems in agricultural settings, and this study provides evidence that Pythium spp. also disseminate through golf course irrigation. Water samples were collected from irrigation heads and water sources at 10 golf courses in Missouri and Kansas, U.S.A. Samples were collected from 2018 to 2019 in April, July, and October. Phosphorus, nitrogen, and chloride concentrations were measured from irrigation head samples to determine if these parameters influence frequency of Pythium spp. detected. Pythium spp. were detected in samples through baiting and membrane filtration. Cultures were isolated on PARP media, and DNA was extracted from putative Pythium isolates. The internal transcribed spacer region was PCR-amplified and sequenced. Phylogenetic trees were constructed using representative sample sequences, sequences from seven morphologically identified reference isolates of Pythium, and similar GenBank accessions. Detected oomycete species include Lagenidium giganteum, Pythium biforme, Pythium insidiosum, Pythium marsipium, Pythium plurisporium, and Saprolegnia hypogyna. Twenty-one clades lacked species-level resolution, and 14 of these clades were associated with Pythium species. Clades A, C, D, E, I, and M contain Pythium species that cause root and crown rot on creeping bentgrass. Detected Pythium communities were dependent on the detection method used and sampling source. Pythium frequency and diversity were highest in April 2019. Sample temperature, sampling site, and chloride and nutrient concentrations did not influence Pythium frequency in samples. Irrigation systems using surface water sources contained at least three Pythium spp. over the course of 2 years.


Assuntos
Irrigação Agrícola , Golfe , Pythium , Agricultura , Filogenia , Reação em Cadeia da Polimerase , Pythium/genética , Pythium/isolamento & purificação , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...