Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 823: 153699, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35152004

RESUMO

Vehicle emission remote sensing devices have been widely used for monitoring and assessing the real-world emission performance of vehicles. They are also well-suited to identify candidate high emitting vehicles as remote sensing surveys measure the on-road, real-driving emissions (RDE) of a high proportion of the operational vehicle fleet passing through a testing site. This study uses the Gumbel distribution to characterize the fuel-specific NOx emission rates (g·kg-1) from diesel vans (formally referred to as light commercial vehicles or LCVs) and screen candidate high emitting vehicles. Van emission trends of four European countries (Belgium, Sweden, Switzerland and the UK) from Euro 3 to Euro 6a/b have been studied, and the impact of road grade on candidate Euro 6a/b high-emitters is also evaluated. The measurements of Euro 6a/b fleets from four countries are pooled together, and a consistent 4% of candidate high-emitters are found in both class II and class III Euro 6a/b vans, accounting for an estimated 24% and 21% total NOx emissions respectively. The pooled four country data is differentiated by vehicle models and manufacture groups. Engine downsizing of Euro 6a/b class II vans is suspected to worsen the emission performance when vehicles are driven under high engine load. The VW Group is found to be the manufacture with cleanest NOx emission performance in the Euro 6a/b fleets. By distinguishing high-emitters from normally behaving vehicles, a more robust description of fleet behaviour can be provided and high-emitting vehicles targeted for further testing by plume chasing or in an inspection garage. If the vehicle is found to have a faulty, deteriorated or tampered emission after-treatment system, the periodic vehicle inspection safety and environmental performance certificate could be revoked.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Veículos Automotores , Tecnologia de Sensoriamento Remoto , Emissões de Veículos/análise
2.
Sci Total Environ ; 750: 142088, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33182199

RESUMO

The quantification and comparison of NOX emission from in-situ car fleets, and identification of the highest emitters is an ongoing challenge. This challenge will become more important as new and increasingly complex emissions removal systems penetrate the market. We combine real-world data with new-to-the-field statistical methods to describe fleet-scale emissions behaviours and identify candidate gross-emitter vehicles. 19,605 passenger cars were observed using a Remote Sensing Device across Aberdeen in 2015. Of these, 736 were Euro 6 Passenger Cars. The distribution of observed pollutant per unit of fuel burnt ratios for most fuel type and Euro standards followed an asymmetrical shape best characterised by the Gumbel distribution. The Gumbel distribution approach was not able to fully replicate the distribution of measurements of petrol or Euro 6 diesel cars due to the presence of a subset of high-emitting outliers, ranging from the 13th percentile for Euro 3 petrol to the 2nd percentile for Euro 6 petrol, with Euro 6 diesel having a 5th percentile outlier value. No outlier fraction was observed for pre-Euro 6 diesels. The off-model fractions resembled Gumbel distributed data and in some cases could be modelled as a separate distribution with the fleet behaving as a superposition of them. It is shown that VSP was not directly linked to this behaviour and it is hypothesised that it is caused by the emissions control systems operating sub-optimally. The reasons for sub-optimal operation are beyond the scope of this paper but may be linked to air-fuel mixture sensors, cold-start running and deterioration of the catalytic converter. Larger data-sets with more Euro 6 passenger cars are required to fully test this. Application of this methodology to larger data sets from more widely deployed remote sensing devices will allow observers to identify potentially problematic vehicles for further investigation into their emission control systems.

3.
J Air Waste Manag Assoc ; 68(2): 111-122, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28287911

RESUMO

Emissions of nitrogen oxides (NOx) by vehicles in real driving environments are only partially understood. This has been brought to the attention of the world with recent revelations of the cheating of the type of approval tests exposed in the dieselgate scandal. Remote-sensing devices offer investigators an opportunity to directly measure in situ real driving emissions of tens of thousands of vehicles. Remote-sensing NO2 measurements are not as widely available as would be desirable. The aim of this study is to improve the ability of investigators to estimate the NO2 emissions and to improve the confidence of the total NOx results calculated from standard remote-sensing device (RSD) measurements. The accuracy of the RSD speed and acceleration module was also validated using state-of-the-art onboard global positioning system (GPS) tracking. Two RSDs used in roadside vehicle emissions surveys were tested side by side under off-carriageway conditions away from transient pollution sources to ascertain the consistency of their measurements. The speed correlation was consistent across the range of measurements at 95% confidence and the acceleration correlation was consistent at 95% confidence intervals for all but the most extreme acceleration cases. VSP was consistent at 95% confidence across all measurements except for those at VSP ≥ 15 kW t-1, which show a small underestimate. The controlled distribution gas nitric oxide measurements follow a normal distribution with 2σ equal to 18.9% of the mean, compared to 15% observed during factory calibration indicative of additional error introduced into the system. Systematic errors of +84 ppm were observed but within the tolerance of the control gas. Interinstrument correlation was performed, with the relationship between the FEAT and the RSD4600 being linear with a gradient of 0.93 and an R2 of 0.85, indicating good correlation. A new method to calculate NOx emissions using fractional NO2 combined with NO measurements made by the RSD4600 was constructed, validated, and shown to be more accurate than previous methods. IMPLICATIONS: Synchronized remote-sensing measurements of NO were taken using two different remote-sensing devices in an off-road study. It was found that the measurements taken by both instruments were well correlated. Fractional NO2 measurements from a prior study, measurable on only one device, were used to create new NOx emission factors for the device that could not be measured by the second device. These estimates were validated against direct measurement of total NOx emission factors and shown to be an improvement on previous methodologies. Validation of vehicle-specific power was performed with good correlation observed.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/instrumentação , Óxidos de Nitrogênio/análise , Emissões de Veículos/análise , Poluentes Atmosféricos/química , Condução de Veículo , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Óxidos de Nitrogênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...