Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(13): e202317070, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38063469

RESUMO

Complex natural product functionalizations generally involve the use of highly engineered reagents, catalysts, or enzymes to react exclusively at a desired site through lowering of a select transition state energy. In this communication, we report a new, complementary strategy in which all transition states representing undesirable sites in a complex ionophore substrate are simultaneously energetically increased through the chelation of a metal ion to the large fragment we wish to neutralize. In the case of an electrophilic, radical based fluorination reaction, charge repulsion (electric field effects), induced steric effects, and electron withdrawal provide the necessary deactivation and proof of principle to afford a highly desirable natural product derivative. We envisage that many other electrophilic or charge based synthetic methods may be amenable to this approach as well.

2.
J Org Chem ; 88(24): 17538-17543, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38033293

RESUMO

We have established hydrogen atom transfer (HAT) as the key player in a directed, photopromoted fluorination of pyridylic groups. The Lewis basic pyridyl nitrogen directs amine radical dication propagated HAT and Selectfluor fluorination of various ortho substituents in a highly regioselective manner with little to no side product formation. A variety of pyridines and quinolines were employed to showcase the directing capability of the nitrogen atom. Additionally, both experimental and computational data are provided that illuminate how this mechanism differs from and complements prior work in the area.

3.
J Am Chem Soc ; 145(41): 22442-22455, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37791901

RESUMO

In 2015, we reported a photochemical method for directed C-C bond cleavage/radical fluorination of relatively unstrained cyclic acetals using Selectfluor and catalytic 9-fluorenone. Herein, we provide a detailed mechanistic study of this reaction, during which it was discovered that the key electron transfer step proceeds through substrate oxidation from a Selectfluor-derived N-centered radical intermediate (rather than through initially suspected photoinduced electron transfer). This finding led to proof of concept for two new methodologies, demonstrating that unstrained C-C bond fluorination can also be achieved under chemical and electrochemical conditions. Moreover, as C-C and C-H bond fluorination reactions are both theoretically possible on 2-aryl-cycloalkanone acetals and would involve the same reactive intermediate, we studied the competition between single-electron transfer (SET) and apparent hydrogen-atom transfer (HAT) pathways in acetal fluorination reactions using density functional theory. Finally, these analyses were applied more broadly to other classes of C-H and C-C bond fluorination reactions developed over the past decade, addressing the feasibility of SET processes masquerading as HAT in C-H fluorination literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...