Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(23): 16112-16118, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38803151

RESUMO

Thermosets, characterized by their permanent cross-linked networks, present significant challenges in recyclability and brittleness. In this work, we explore a polarized Knoevenagel C═C metathesis reaction for the development of rigid yet tough and malleable thermosets. Initial investigation on small molecule model reactions reveals the feasibility of conducting the base-catalyzed C═C metathesis reaction in a solvent-free environment. Subsequently, thermosetting poly(α-cyanocinnamate)s (PCCs) were synthesized via Knoevenagel condensation between a triarm cyanoacetate star and a dialdehyde. The thermal and mechanical properties of the developed PCCs can be easily modulated by altering the structure of the dialdehyde. Remarkably, the introduction of ether groups into the PCC leads to a combination of high rigidity and toughness with Young's modulus of ∼1590 MPa, an elongation at break of ∼79%, and a toughness reaching ∼30 MJ m3. These values are competitive to traditional thermosets, in Young's modulus but far exceed them in ductility and toughness. Moreover, the C═C metathesis facilitates stress relaxation within the bulk polymer networks, thus rendering PCCs excellent malleability and reprocessability. This work overcomes the traditional limitations of thermosets, introducing groundbreaking insights for the design of rigid yet tough and malleable thermosets, and contributing significantly to the sustainability of materials.

2.
Angew Chem Int Ed Engl ; 63(20): e202400955, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38489506

RESUMO

Vitrimers represent an emerging class of polymeric materials that combine the desirable characteristics of both thermoplastics and thermosets achieved through the design of dynamic covalent bonds within the polymer networks. However, these materials are prone to creep due to the inherent instability of dynamic covalent bonds. Consequently, there are pressing demands for the development of robust and stable dynamic covalent chemistries. Here, we report a catalyst-free α-acetyl cinnamate/acetoacetate (α-AC/A) exchange reaction to develop vitrimers with remarkable creep resistance. Small-molecule model studies revealed that the α-AC/A exchange occurred at temperatures above 140 °C in bulk, whereas at 120 °C, this reaction was absent. For demonstration in the case of polymers, copolymers derived from common vinyl monomers were crosslinked with terephthalaldehyde to produce α-AC/A vitrimers with tunable thermal and mechanical performance. All resulting α-AC/A vitrimers exhibited high stability, especially in terms of creep resistance at 120 °C, while retaining commendable reprocessability when subjected to high temperatures. This work showcases the α-AC/A exchange reaction as a novel and robust dynamic covalent chemistry capable of imparting both reprocessability and high stability to cross-linked networks.

3.
ACS Appl Mater Interfaces ; 12(20): 23443-23452, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32348674

RESUMO

A simple and straightforward approach to synthesize oil-in-water (O/W) emulsions under high salinity and temperature using zwitterion-functionalized latexes are presented in this work. First, well-defined functionalized latexes were synthesized by emulsifier-free emulsion copolymerization in the presence of precursor sulfobetaine comonomer using brine as a continuous phase. The surface-functionalized latex particles were then characterized by DLS, SEM, TEM, XPS, and TGA. The functionalized latex exhibited antipolyelectrolyte behavior in high salinity brine and at high temperatures. The effects of salinity, temperature, and pH on the long-term stability of the particles were investigated. Further, to evaluate the potential in high salinity brine and high temperature, the saltphilic functionalized latexes were utilized to stabilize the oil/brine (O/W) interface without any other additives. The latex enabled the formation of a stable Pickering emulsion system with low solid content (<0.02% w/w) in the presence of 50% v/v n-decane. The functionalized latexes were self-assembled at the O/W interface as a spherical colloidosome in high salinity brine through hydrophobic interactions and irreversible adsorption. The supraparticles were imaged with SEM, providing an insight that the exterior of the emulsion droplets is stabilized by the saltphilic latex particles, forming a protective layer at the oil-water interface through electrostatic repulsion. The antipolyelectrolyte latex can be utilized as a novel emulsion stabilizer, which can provide a versatile alternative for applications in a complex environment such as high salinity, temperature, and low or high pH.

4.
RSC Adv ; 9(47): 27199-27207, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35529225

RESUMO

A facile and simple synthetic route towards functionalized non-spherical polymer particles (NSP) with tunable morphologies and iridescence is presented. Monodisperse particles with unique zwitterionic functionality were synthesized via emulsifier-free emulsion polymerization in a single step process. The sulfobetaine comonomer was utilized to induce phase separation in the course of polymerization to achieve anisotropic NSP with controlled morphologies such as quasi-spherical with protruding structures like bulge, eye-ball, and snowman-like nanostructures. Both SEM and TEM analyses revealed anisotropic particles, and phase-separated protrusion morphology with a small increase in aspect ratio. By taking advantage of the monodisperse, colloidally stable NSPs, template free photonic crystal arrays were fabricated through a bottom-up approach. The particles readily self-assemble and exhibit a photonic bandgap with vivid structural colors that arise from ordered structures of different morphologies. Additionally, the salt-responsive photonic crystals also possess tunable color-changing characteristics.

5.
Polymers (Basel) ; 10(7)2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30960699

RESUMO

Vesicle templated emulsion polymerization is a special form of emulsion polymerization where the polymer is grown from the outside of the vesicle, leading to nanocapsules. Cost effective nanocapsules synthesis is in high demand due to phasing out of older methods for capsule synthesis. Although the first indications of this route being successful were published some 10 years ago, until now a thorough understanding of the parameters controlling the morphologies resulting from the template emulsion polymerization was lacking. Most often a mixture of different morphologies was obtained, ranging from solid particles to pro-trusion structures to nanocapsules. A high yield of nanocapsules was not achieved until now. In this paper, the influence of initial vesicle dispersion, choice of the Reversible Addition-Fragmentation chain Transfer (RAFT) species and oligomer, monomer and crosslinker have been investigated. It turns out that good initial vesicle dispersion, molecular control of the RAFT process, a not too hydrophobic monomer and some crosslinking is needed to result in high yield of nanocapsules. In previous work, the level of RAFT control was often suboptimal and not properly verified and although nanocapsules were shown, other morphologies were also present. We now believe we have a full understanding of vesicle templated nanocapsules synthesis, relevant to many applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...