Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Microgravity ; 9(1): 46, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344482

RESUMO

As NASA prepares for crewed lunar missions over the next several years, plans are also underway to journey farther into deep space. Deep space exploration will require a paradigm shift in astronaut medical support toward progressively earth-independent medical operations (EIMO). The Exploration Medical Capability (ExMC) element of NASA's Human Research Program (HRP) is investigating the feasibility and value of advanced capabilities to promote and enhance EIMO. Currently, astronauts rely on real-time communication with ground-based medical providers. However, as the distance from Earth increases, so do communication delays and disruptions. Moreover, resupply and evacuation will become increasingly complex, if not impossible, on deep space missions. In contrast to today's missions in low earth orbit (LEO), where most medical expertise and decision-making are ground-based, an exploration crew will need to autonomously detect, diagnose, treat, and prevent medical events. Due to the sheer amount of pre-mission training required to execute a human spaceflight mission, there is often little time to devote exclusively to medical training. One potential solution is to augment the long duration exploration crew's knowledge, skills, and abilities with a clinical decision support system (CDSS). An analysis of preliminary data indicates the potential benefits of a CDSS to mission outcomes when augmenting cognitive and procedural performance of an autonomous crew performing medical operations, and we provide an illustrative scenario of how such a CDSS might function.

2.
J Sci Med Sport ; 26 Suppl 1: S40-S45, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36934030

RESUMO

Wearable sensors enable down range data collection of physiological and cognitive performance of the warfighter. However, autonomous teams may find the sensor data impractical to interpret and hence influence real-time decisions without the support of subject matter experts. Decision support tools can reduce the burden of interpreting physiological data in the field and incorporate a systems perspective where noisy field data can contain useful additional signals. We present a methodology of how artificial intelligence can be used for modeling human performance with decision-making to achieve actionable decision support. We provide a framework for systems design and advancing from the laboratory to real world environments. The result is a validated measure of down-range human performance with a low burden of operation.


Assuntos
Inteligência Artificial , Militares , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...