Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(9): 8345-8354, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37075195

RESUMO

High energy consumption and high cost have been the obstacles for large-scale deployment of all state-of-the-art CO2 capture technologies. Finding a transformational way to improve mass transfer and reaction kinetics of the CO2 capture process is timely for reducing carbon footprints. In this work, commercial single-walled carbon nanotubes (CNTs) were activated with nitric acid and urea under ultrasonication and hydrothermal methods, respectively, to prepare N-doped CNTs with the functional group of -COOH, which possesses both basic and acid functionalities. The chemically modified CNTs with a concentration of 300 ppm universally catalyze both CO2 sorption and desorption of the CO2 capture process. The increases in the desorption rate achieved with the chemically modified CNTs can reach as high as 503% compared to that of the sorbent without the catalyst. A chemical mechanism underlying the catalytic CO2 capture is proposed based on the experimental results and further confirmed by density functional theory computations.

2.
J Am Chem Soc ; 142(34): 14674-14687, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32787241

RESUMO

Zinc and Yttrium single sites were introduced into the silanol nests of dealuminated BEA zeolite to produce Zn-DeAlBEA and Y-DeAlBEA. These materials were then investigated for the conversion of ethanol to 1,3-butadiene. Zn-DeAlBEA was found to be highly active for ethanol dehydrogenation to acetaldehyde and exhibited low activity for 1,3-butadiene generation. By contrast, Y-DeAlBEA was highly active for 1,3-butadiene formation but exhibited no activity for ethanol dehydrogenation. The formation of 1,3-butadine over Y-DeAlBEA and Zn-DeAlBEA does not occur via aldol condensation of acetaldehyde but, rather, by concerted reaction of coadsorbed acetaldehyde and ethanol. The active centers for this process are ≡Si-O-Y(OH)-O-Si≡ or ≡Si-O-Zn-O-Si-O≡ groups closely associated with adjacent silanol groups. The active sites in Y-DeAlBEA are 70 times more active than the Y sites supported on silica, for which the Y site is similar to that in Y-SiO2 but which lacks adjacent hydroxyl groups, and are 7 times more active than the active sites in Zn-DeAlBEA. We propose that C-C bond coupling in Y-DeAlBEA proceeds via the reaction of coadsorbed acetaldehyde and ethanol to form crotyl alcohol and water. The dehydration of crotyl alcohol to 1,3-butadiene is facile and occurs over the mildly Brønsted acidic ≡Si-OH groups present in the silanol nest of DeAlBEA. The catalysts reported here are notably more active than those previously reported for both the direct conversion of ethanol to 1,3-butadiene or the formation of this product by the reaction of ethanol and acetaldehyde.

3.
Nat Commun ; 10(1): 5698, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836709

RESUMO

Recently, carbon dioxide capture and conversion, along with hydrogen from renewable resources, provide an alternative approach to synthesis of useful fuels and chemicals. People are increasingly interested in developing innovative carbon dioxide hydrogenation catalysts, and the pace of progress in this area is accelerating. Accordingly, this perspective presents current state of the art and outlook in synthesis of light olefins, dimethyl ether, liquid fuels, and alcohols through two leading hydrogenation mechanisms: methanol reaction and Fischer-Tropsch based carbon dioxide hydrogenation. The future research directions for developing new heterogeneous catalysts with transformational technologies, including 3D printing and artificial intelligence, are provided.

4.
Nanoscale ; 11(20): 9969-9979, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31070648

RESUMO

The hydrogenation of CO2 to CH3OH is one of the most promising technologies for the utilization of captured CO2 in the future. Nano Ni-Ga bimetallic catalysts have been proven to be excellent catalysts in the hydrogenation of CO2 to CH3OH. To investigate the promotion mechanisms of Ga for the hydrogenation of CO2 to CH3OH over Ga-doped Ni catalysts and the wide application of these promotion mechanisms in other catalysts and reactions, herein, density functional theory (DFT) was employed. The reaction mechanisms and the properties of Ni(211) and Ga-Ni(211) surfaces were comparatively studied. The results show that the Ni sites on both the Ni(211) and the Ga-Ni(211) surfaces are active sites, and the most stable structures of the intermediates are similar. Moreover, the Ga-Ni(211) surface is more favorable for the hydrogenation of CO2, whereas Ni(211) is more favorable for the dissociation of CO2. The activation barrier of the rate-limiting step in the CH3OH formation pathway on Ni(211) is 0.54 eV higher than that on Ga-Ni(211). According to the analyses of the projected density of states (PDOS) and Hirshfeld charge transfer, the addition of Ga atoms demonstrates the reactivity of the Ga-doped Ni(211) surfaces. Most importantly, the replacement of some secondary active sites of Ni atoms with the non-active Ga atoms may lower the activities of the secondary active sites and strengthen the activities of the active sites at the step edge. These results provide a new perspective for the reaction mechanism of the hydrogenation of CO2 to CH3OH over the state-of-the-art Ga-doped catalysts.

5.
J Environ Sci (China) ; 78: 74-80, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30665658

RESUMO

Amine-basedcarbon-capture technologies have been shown to be energetically expensive and to cause significant environmental and epidemiological impacts due to their volatility. Bicarbonate formation from carbon dioxide's reaction with water has been suggested as an effective alternative for capturing CO2; however, the thermodynamics of this reaction are not well understood. This study experimentally determined the equilibrium constant of sodium bicarbonate (NaHCO3) decomposition to sodium, water, and carbon dioxide; the study also compared the equilibrium constant to theoretical calculations. Using a combination of experimentation and thermodynamic relationships, the unitless equilibrium constants of the forward and reverse reactions were calculated accurately (error <±9% and <±4%, respectively). Equilibrium data were calculated using enthalpy and entropy values of each component of NaHCO3 decomposition at temperatures ranging from 25 to 155°C respectively. These results offer more data essential to optimizing NaHCO3 use in environmentally friendly next-generation CO2-capture technologies.


Assuntos
Dióxido de Carbono/química , Modelos Químicos , Bicarbonato de Sódio/química , Termodinâmica
6.
Chem Commun (Camb) ; 54(60): 8395-8398, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29998264

RESUMO

High-performance CO2 sorbents typically contain both alkaline compounds and inert supporting materials. The convention is broken by TiO(OH)2. The CO2 sorption capacity of nanostructured TiO(OH)2 reaches 6.1 mmol g-1, while its CO2 sorption selectivity for CO2/N2 mixtures is much higher than that of state-of-the-art sorbents, activated carbon and zeolite, which is another surprise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...