Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 6: e4655, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686946

RESUMO

The fitness effects associated with Wolbachia infection have wide-ranging ecological and evolutionary consequences for host species. How these effects are modulated by the relative influence of host and Wolbachia genomes has been described as a balancing act of genomic cooperation and conflict. For vertically transmitted symbionts, like cytoplasmic Wolbachia, concordant host-symbiont fitness interests would seem to select for genomic cooperation. However, Wolbachia's ability to manipulate host reproductive systems and distort offspring sex ratios presents an evolutionary conflict of interest with infected hosts. In the parthenogenesis-inducing (PI) form of Wolbachia found in many haplodiploid insects, Wolbachia fitness is realized through females and is enhanced by their feminization of male embryos and subsequent parthenogenetic reproduction. In contrast, as long as Wolbachia is not fixed in a population and sexual reproduction persists, fitness for the host species is realized through both male and female offspring production. How these cooperating and competing interests interact and the relative influence of host and Wolbachia genomes were investigated in the egg parasitoid Trichogramma kaykai, where Wolbachia infection has remained at a low frequency in the field. A factorial design in which laboratory cultures of Wolbachia-infected T. kaykai were cured and re-infected with alternative Wolbachia strains was used to determine the relative influence of host and Wolbachia genomes on host fitness values. Our results suggest fitness variation is largely a function of host genetic background, except in the case of offspring sex ratio where a significant interaction between host and Wolbachia genomes was found. We also find a significant effect associated with the horizontal transfer of Wolbachia strains, which we discuss in terms of the potential for coadaptation in PI-Wolbachia symbioses.

2.
CBE Life Sci Educ ; 14(1): ar4, 2015 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-25681416

RESUMO

The traditional undergraduate program of study incorporates a selection of classes that represent a broad spectrum of subdisciplines. Unfortunately, few curricula successfully integrate concepts in all subdisciplines, giving undergraduates the misconception that there is a lack of application or connectedness between class subjects. An integrated course-embedded research experience (ICURE) was initiated to redress this problem by bridging classes within one discipline in an effort to engage undergraduates in a long-term analysis of biodiversity. The approach was both inclusive and longitudinal: 1) the ICURE bridge brought students from different classes and levels of instruction together with faculty members in a research project with a common goal-chronicling the changing face of the local environment in biological terms; and 2) research data collected were maintained and supplemented each semester and year in an online biodiversity database. Analysis of content and attitudinal gains suggested the integrated research protocol increased student comprehension and confidence. Results are discussed in terms of future amendments to instructional design and potential research applications. Though this program was concentrated on one discipline, there is no reason to assume other disciplines could not take advantage of similar research connections.


Assuntos
Pesquisa Biomédica/organização & administração , Currículo , Animais , Biodiversidade , California , Código de Barras de DNA Taxonômico , Bases de Dados Factuais , Avaliação Educacional , Meio Ambiente , Docentes , Humanos , Insetos , Internet , Modelos Educacionais , Desenvolvimento de Programas , Fatores de Tempo , Universidades
3.
PLoS One ; 6(11): e26370, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22073160

RESUMO

Bacterial mutualists are often acquired from the environment by eukaryotic hosts. However, both theory and empirical work suggest that this bacterial lifestyle is evolutionarily unstable. Bacterial evolution outside of the host is predicted to favor traits that promote an independent lifestyle in the environment at a cost to symbiotic function. Consistent with these predictions, environmentally-acquired bacterial mutualists often lose symbiotic function over evolutionary time. Here, we investigate the evolutionary erosion of symbiotic traits in Bradyrhizobium japonicum, a nodulating root symbiont of legumes. Building on a previous published phylogeny we infer loss events of nodulation capability in a natural population of Bradyrhizobium, potentially driven by mutation or deletion of symbiosis loci. Subsequently, we experimentally evolved representative strains from the symbiont population under host-free in vitro conditions to examine potential drivers of these loss events. Among Bradyrhizobium genotypes that evolved significant increases in fitness in vitro, two exhibited reduced symbiotic quality, but no experimentally evolved strain lost nodulation capability or evolved any fixed changes at six sequenced loci. Our results are consistent with trade-offs between symbiotic quality and fitness in a host free environment. However, the drivers of loss-of-nodulation events in natural Bradyrhizobium populations remain unknown.


Assuntos
Evolução Biológica , Bradyrhizobium/genética , Simbiose , Bradyrhizobium/classificação , Filogenia , Reação em Cadeia da Polimerase
4.
BMC Evol Biol ; 10: 229, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20667099

RESUMO

BACKGROUND: The maternally inherited, bacterial symbiont, parthenogenesis inducing (PI) Wolbachia, causes females in some haplodiploid insects to produce daughters from both fertilized and unfertilized eggs. The symbionts, with their maternal inheritance, benefit from inducing the production of exclusively daughters, however the optimal sex ratio for the nuclear genome is more male-biased. Here we examine through models how an infection with PI-Wolbachia in a previously uninfected population leads to a genomic conflict between PI-Wolbachia and the nuclear genome. In most natural populations infected with PI-Wolbachia the infection has gone to fixation and sexual reproduction is impossible, specifically because the females have lost their ability to fertilize eggs, even when mated with functional males. RESULTS: The PI Wolbachia infection by itself does not interfere with the fertilization process in infected eggs, fertilized infected eggs develop into biparental infected females. Because of the increasingly female-biased sex ratio in the population during a spreading PI-Wolbachia infection, sex allocation alleles in the host that cause the production of more sons are rapidly selected. In haplodiploid species a reduced fertilization rate leads to the production of more sons. Selection for the reduced fertilization rate leads to a spread of these alleles through both the infected and uninfected population, eventually resulting in the population becoming fixed for both the PI-Wolbachia infection and the reduced fertilization rate. Fertilization rate alleles that completely interfere with fertilization ("virginity alleles") will be selected over alleles that still allow for some fertilization. This drives the final resolution of the conflict: the irreversible loss of sexual reproduction and the complete dependence of the host on its symbiont. CONCLUSIONS: This study shows that dependence among organisms can evolve rapidly due to the resolution of the conflicts between cytoplasmic and nuclear genes, and without requiring a mutualism between the partners.


Assuntos
Evolução Biológica , Genoma de Inseto , Partenogênese/genética , Simbiose , Vespas/genética , Wolbachia , Animais , Núcleo Celular/genética , Feminino , Fertilização , Masculino , Modelos Biológicos , Mutação , Óvulo , Razão de Masculinidade , Vespas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...