Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 13020, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158539

RESUMO

While mobile elements are largely inactive in healthy somatic tissues, increased activity has been found in cancer tissues, with significant variation among different cancer types. In addition to insertion events, mobile elements have also been found to mediate many structural variation events in the genome. Here, to better understand the timing and impact of mobile element insertions and associated structural variants in cancer, we examined their activity in longitudinal samples of four metastatic breast cancer patients. We identified 11 mobile element insertions or associated structural variants and found that the majority of these occurred early in tumor progression. Most of the variants impact intergenic regions; however, we identified a translocation interrupting MAP2K4 involving Alu elements and a deletion in YTHDF2 involving mobile elements that likely inactivate reported tumor suppressor genes. The high variant allele fraction of the translocation, the loss of the other copy of MAP2K4, the recurrent loss-of-function mutations found in this gene in other cancers, and the important function of MAP2K4 indicate that this translocation is potentially a driver mutation. Overall, using a unique longitudinal dataset, we find that most variants are likely passenger mutations in the four patients we examined, but some variants impact tumor progression.


Assuntos
Neoplasias da Mama/genética , Elementos de DNA Transponíveis/genética , Variação Estrutural do Genoma , Mutagênese Insercional/genética , Alelos , Cromossomos Humanos/genética , Feminino , Dosagem de Genes , Humanos , Estudos Longitudinais , MAP Quinase Quinase 4/genética
2.
Neurology ; 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135078

RESUMO

OBJECTIVE: To identify novel disease associated loci for amyotrophic lateral sclerosis (ALS), we utilized sequencing data and performed in vitro and in vivo experiments to demonstrate pathogenicity of mutations identified in TP73. METHODS: We analyzed exome sequences of 87 sporadic ALS patients and 324 controls, with confirmatory sequencing in independent ALS cohorts of >2,800 patients. For the top hit, TP73, a regulator of apoptosis, differentiation, and a binding partner as well as homolog of the tumor suppressor gene TP53, we assayed mutation effects using in vitro and in vivo experiments. C2C12 myoblast differentiation assays, characterization of myotube appearance, and immunoprecipitation of p53-p73 complexes were perform in vitro. In vivo, we used CRISPR/Cas9 targeting of zebrafish tp73 to assay motor neuron number and axon morphology. RESULTS: Five heterozygous rare, nonsynonymous mutations in TP73 were identified in our sporadic ALS cohort. In independent ALS cohorts, we identified an additional 19 rare, deleterious variants in TP73. Patient TP73 mutations caused abnormal differentiation and increased apoptosis in the myoblast differentiation assay, with abnormal myotube appearance. Immunoprecipitation of mutant ΔN-p73 demonstrated that patient mutations hinder ΔN-p73's ability to bind p53. CRISPR/Cas9 knockout of tp73 in zebrafish led to impaired motor neuron development and abnormal axonal morphology, concordant with ALS pathology. CONCLUSION: Together, these results strongly suggest that variants in TP73 correlate with risk for ALS and indicate a novel role for apoptosis in ALS disease pathology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...