Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Dir Psychol Sci ; 31(2): 124-130, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35785023

RESUMO

A hallmark of human intelligence is the ability to adapt to new situations, by applying learned rules to new content (systematicity) and thereby enabling an open-ended number of inferences and actions (generativity). Here, we propose that the human brain accomplishes these feats through pathways in the parietal cortex that encode the abstract structure of space, events, and tasks, and pathways in the temporal cortex that encode information about specific people, places, and things (content). Recent neural network models show how the separation of structure and content might emerge through a combination of architectural biases and learning, and these networks show dramatic improvements in the ability to capture systematic, generative behavior. We close by considering how the hippocampal formation may form integrative memories that enable rapid learning of new structure and content representations.

2.
J Cogn Neurosci ; 33(6): 1158-1196, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34428793

RESUMO

How do humans learn from raw sensory experience? Throughout life, but most obviously in infancy, we learn without explicit instruction. We propose a detailed biological mechanism for the widely embraced idea that learning is driven by the differences between predictions and actual outcomes (i.e., predictive error-driven learning). Specifically, numerous weak projections into the pulvinar nucleus of the thalamus generate top-down predictions, and sparse driver inputs from lower areas supply the actual outcome, originating in Layer 5 intrinsic bursting neurons. Thus, the outcome representation is only briefly activated, roughly every 100 msec (i.e., 10 Hz, alpha), resulting in a temporal difference error signal, which drives local synaptic changes throughout the neocortex. This results in a biologically plausible form of error backpropagation learning. We implemented these mechanisms in a large-scale model of the visual system and found that the simulated inferotemporal pathway learns to systematically categorize 3-D objects according to invariant shape properties, based solely on predictive learning from raw visual inputs. These categories match human judgments on the same stimuli and are consistent with neural representations in inferotemporal cortex in primates.


Assuntos
Neocórtex , Pulvinar , Córtex Visual , Animais , Neurônios
3.
Front Psychol ; 11: 380, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210892

RESUMO

We address the distinction between habitual/automatic vs. goal-directed/controlled behavior, from the perspective of a computational model of the frontostriatal loops. The model exhibits a continuum of behavior between these poles, as a function of the interactive dynamics among different functionally-specialized brain areas, operating iteratively over multiple sequential steps, and having multiple nested loops of similar decision making circuits. This framework blurs the lines between these traditional distinctions in many ways. For example, although habitual actions have traditionally been considered purely automatic, the outer loop must first decide to allow such habitual actions to proceed. Furthermore, because the part of the brain that generates proposed action plans is common across habitual and controlled/goal-directed behavior, the key differences are instead in how many iterations of sequential decision-making are taken, and to what extent various forms of predictive (model-based) processes are engaged. At the core of every iterative step in our model, the basal ganglia provides a "model-free" dopamine-trained Go/NoGo evaluation of the entire distributed plan/goal/evaluation/prediction state. This evaluation serves as the fulcrum of serializing otherwise parallel neural processing. Goal-based inputs to the nominally model-free basal ganglia system are among several ways in which the popular model-based vs. model-free framework may not capture the most behaviorally and neurally relevant distinctions in this area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...