Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Conserv ; 256: 109079, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34580546

RESUMO

In early 2020, the rapid spread of the novel coronavirus disease 2019 (COVID-19) led multiple countries to introduce strict lockdown measures to contain the pandemic. Movement restrictions may have influenced the ability of the public to contribute to citizen science projects. We investigated how stay-at-home orders affected data submitted by birdwatchers in Italy, Spain and the United Kingdom (UK) to a widely-used citizen science platform, iNaturalist, depending on whether observations were collected in urban or non-urban areas. We found significant trends in the daily number of observations in all three countries, indicating a surge in urban observation during lockdowns. We found an increase in the mean daily number of urban observations during the lockdown in Italy and Spain, compared to previous years. The mean daily number of non-urban observations decreased in Italy and Spain, while remained similar to previous years in the UK. We found a general decrease of new records during the lockdowns both in urban and non-urban areas in all countries. Our results suggest that the citizen science community remained active during the lockdowns and kept reporting birds from home. However, limitations to movements may have hampered the possibility of birdwatchers to explore natural areas and collect new records. Our findings suggest that future research and conservation applications of citizen science data should carefully consider the bias and gaps in data series caused by the pandemic. Furthermore, our study highlights the potential of urban areas for nature activities, such as birdwatching, and its relevance for sustainable urban planning.

2.
FASEB J ; 34(1): 1652-1664, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914670

RESUMO

Conditions such as asthma and inflammatory bowel disease are characterized by aberrant smooth muscle contraction. It has proven difficult to develop human cell-based models that mimic acute muscle contraction in 2D in vitro cultures due to the nonphysiological chemical and mechanical properties of lab plastics that do not allow for muscle cell contraction. To enhance the relevance of in vitro models for human disease, we describe how functional 3D smooth muscle tissue that exhibits physiological and pharmacologically relevant acute contraction and relaxation responses can be reproducibly fabricated using a unique microfluidic 3D bioprinting technology. Primary human airway and intestinal smooth muscle cells were printed into rings of muscle tissue at high density and viability. Printed tissues contracted to physiological concentrations of histamine (0.01-100 µM) and relaxed to salbutamol, a pharmacological compound used to relieve asthmatic exacerbations. The addition of TGFß to airway muscle rings induced an increase in unstimulated muscle shortening and a decreased response to salbutamol, a phenomenon which also occurs in chronic lung diseases. Results indicate that the 3D bioprinted smooth muscle is a physiologically relevant in vitro model that can be utilized to study disease pathways and the effects of novel therapeutics on acute contraction and chronic tissue stenosis.


Assuntos
Bioimpressão/métodos , Microfluídica/métodos , Músculo Liso/citologia , Miócitos de Músculo Liso/citologia , Sistema Respiratório/citologia , Albuterol/farmacologia , Asma/tratamento farmacológico , Asma/patologia , Células Cultivadas , Humanos , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Impressão Tridimensional , Sistema Respiratório/efeitos dos fármacos , Engenharia Tecidual/métodos
3.
Exp Mol Med ; 50(5): 1-11, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29849046

RESUMO

Granzyme B (GzmB) is a serine protease that has long been thought to function exclusively in lymphocyte-mediated apoptosis. In recent years, this paradigm has been revisited due to the recognition that GzmB accumulates in the extracellular milieu in many autoimmune and chronic inflammatory disorders, and contributes to impaired tissue remodeling due to the cleavage of extracellular matrix proteins. Knockout studies suggest that GzmB-mediated cleavage of decorin (DCN) contributes to impaired collagen fibrillogenesis and remodeling. As DCN is anti-fibrotic and contributes to reduced hypertrophic scarring, GzmB-induced DCN cleavage could play a role in wound healing following burn injury. In the present study, a novel, gel-formulated, first-in-class small-molecule inhibitor of GzmB, VTI-1002, was assessed in a murine model of impaired, diabetic burn wound healing. VTI-1002 exhibited high specificity, potency, and target selectivity. Gel-formulated VTI-1002 was able to penetrate the stratum corneum and was retained in the skin with minimal systemic absorption. Daily topical administration of VTI-1002 gel for 30 days following thermal injury showed significantly accelerated wound closure, increased DCN protein levels, and collagen organization that was translated into significantly increased wound tensile strength compared to controls. Overall, VTI-1002 gel was well-tolerated in vivo and no adverse events were observed. Topical application of VTI-1002 represents a novel therapeutic approach for the treatment of cutaneous burn wounds.


Assuntos
Queimaduras/patologia , Granzimas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/farmacologia , Cicatrização/efeitos dos fármacos , Administração Tópica , Animais , Cicatriz/patologia , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Granzimas/metabolismo , Masculino , Camundongos Endogâmicos C57BL
4.
Sci Rep ; 8(1): 9690, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29946113

RESUMO

In healthy skin, epidermis and dermis are anchored together at the dermal-epidermal junction (DEJ), a specialized basement membrane pivotal for skin integrity and function. However, increased inflammation in the DEJ is associated with the disruption and separation of this junction and sub-epidermal blistering. Granzyme B (GzmB) is a serine protease secreted by immune cells. Dysregulated inflammation may lead to increased GzmB accumulation and proteolysis in the extracellular milieu. Although elevated GzmB is observed at the level of the DEJ in inflammatory and blistering skin conditions, the present study is the first to explore GzmB in the context of DEJ degradation in autoimmune sub-epidermal blistering. In the present study, GzmB induced separation of the DEJ in healthy human skin. Subsequently, α6/ß4 integrin, collagen VII, and collagen XVII were identified as extracellular substrates for GzmB through western blot, and specific cleavage sites were identified by mass spectrometry. In human bullous pemphigoid, dermatitis herpetiformis, and epidermolysis bullosa acquisita, GzmB was elevated at the DEJ when compared to healthy samples, while α6/ß4 integrin, collagen VII, and collagen XVII were reduced or absent in the area of blistering. In summary, our results suggest that regardless of the initial causation of sub-epidermal blistering, GzmB activity is a common final pathway that could be amenable to a single targeted treatment approach.


Assuntos
Epiderme/metabolismo , Granzimas/metabolismo , Pele/metabolismo , Autoantígenos/metabolismo , Dermatite Herpetiforme/metabolismo , Derme/metabolismo , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Colágenos não Fibrilares/metabolismo , Penfigoide Bolhoso/metabolismo , Espectrometria de Massas em Tandem , Colágeno Tipo XVII
5.
Sci Rep ; 7(1): 15857, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29158532

RESUMO

Decorin (DCN) is a small-leucine rich proteoglycan that mediates collagen fibrillogenesis, organization, and tensile strength. Adventitial DCN is reduced in abdominal aortic aneurysm (AAA) resulting in vessel wall instability thereby predisposing the vessel to rupture. Recombinant DCN fusion protein CAR-DCN was engineered with an extended C-terminus comprised of CAR homing peptide that recognizes inflamed blood vessels and penetrates deep into the vessel wall. In the present study, the role of systemically-administered CAR-DCN in AAA progression and rupture was assessed in a murine model. Apolipoprotein E knockout (ApoE-KO) mice were infused with angiotensin II (AngII) for 28 days to induce AAA formation. CAR-DCN or vehicle was administrated systemically until day 15. Mortality due to AAA rupture was significantly reduced in CAR-DCN-treated mice compared to controls. Although the prevalence of AAA was similar between vehicle and CAR-DCN groups, the severity of AAA in the CAR-DCN group was significantly reduced. Histological analysis revealed that CAR-DCN treatment significantly increased DCN and collagen levels within the aortic wall as compared to vehicle controls. Taken together, these results suggest that CAR-DCN treatment attenuates the formation and rupture of Ang II-induced AAA in mice by reinforcing the aortic wall.


Assuntos
Aneurisma da Aorta Abdominal/genética , Apolipoproteínas E/genética , Decorina/genética , Proteínas Recombinantes/genética , Angiotensina II/genética , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/fisiopatologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Proteínas Recombinantes/administração & dosagem
6.
Biores Open Access ; 4(1): 374-88, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26487982

RESUMO

To more closely mimic the native cellular microenvironment, 3D scaffolds derived from the extracellular matrix (ECM) are being developed as alternatives to conventional 2D culture systems. In the present study, we established methods to fabricate nonchemically cross-linked 3D porous foams derived entirely from decellularized porcine left ventricle (DLV) for use as an in vitro cardiac cell culture platform. Furthermore, we explored the effects of physically preprocessing the DLV through mechanical mincing versus cryomilling, as well as varying the ECM concentration on the structure, composition, and physical properties of the foams. Our results indicate that the less highly processed minced foams had a more cohesive and complex network of ECM components, enhanced mechanical properties, and improved stability under simulated culturing conditions. To validate the DLV foams, a proof-of-concept study was conducted to explore the early cardiomyogenic differentiation of pericardial fat adipose-derived stem/stromal cells (pfASCs) on the minced DLV foams relative to purified collagen I gel controls. Differentiation was induced using a modified cardiomyogenic medium (MCM) or through stimulation with 5-azacytidine (5-aza), and cardiomyocyte marker expression was characterized by immunohistochemistry and real-time reverse transcriptase-polymerase chain reaction. Our results indicate that early markers of cardiomyogenic differentiation were significantly enhanced on the DLV foams cultured in MCM, suggesting a synergistic effect of the cardiac ECM-derived scaffolds and the culture medium on the induction of pfASC differentiation. Furthermore, in analyzing the response in the noninduced control groups, the foams were observed to provide a mildly inductive microenvironment for pfASC cardiomyogenesis, supporting the rationale for using tissue-specific ECM as a substrate for cardiac cell culture applications.

8.
Biomaterials ; 35(13): 3956-74, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24560461

RESUMO

Myocardial infarction (MI) is one of the leading causes of mortality worldwide and is associated with irreversible cardiomyocyte death and pathological remodeling of cardiac tissue. In the past 15 years, several animal models have been developed for pre-clinical testing to assess the potential of stem cells for functional tissue regeneration and the attenuation of left ventricular remodeling. The promising results obtained in terms of improved cardiac function, neo-angiogenesis and reduction in infarct size have motivated the initiation of clinical trials in humans. Despite the potential, the results of these studies have highlighted that the effective delivery and retention of viable cells within the heart remain significant challenges that have limited the therapeutic efficacy of cell-based therapies for treating the ischemic myocardium. In this review, we discuss key elements for designing clinically translatable cell-delivery approaches to promote myocardial regeneration. Key topics addressed include cell selection, with a focus on mesenchymal stem cells derived from the bone marrow (bMSCs) and adipose tissue (ASCs), including a discussion of their potential mechanisms of action. Natural and synthetic biomaterials that have been investigated as injectable cell delivery vehicles for cardiac applications are critically reviewed, including an analysis of the role of the biomaterials themselves in the therapeutic scheme.


Assuntos
Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/terapia , Regeneração/fisiologia , Animais , Humanos , Células-Tronco Mesenquimais/fisiologia , Miocárdio/citologia , Miocárdio/metabolismo
9.
Stem Cells Transl Med ; 3(2): 206-17, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24361924

RESUMO

Adipose tissue is an abundant source of multipotent progenitor cells that have shown promise in regenerative medicine. In humans, fat is primarily distributed in the subcutaneous and visceral depots, which have varying biochemical and functional properties. In most studies to date, subcutaneous adipose tissue has been investigated as the adipose-derived stem cell (ASC) source. In this study, we sought to develop a broader understanding of the influence of specific adipose tissue depots on the isolated ASC populations through a systematic comparison of donor-matched abdominal subcutaneous fat and omentum, and donor-matched pericardial adipose tissue and thymic remnant samples. We found depot-dependent and donor-dependent variability in the yield, viability, immunophenotype, clonogenic potential, doubling time, and adipogenic and osteogenic differentiation capacities of the ASC populations. More specifically, ASCs isolated from both intrathoracic depots had a longer average doubling time and a significantly higher proportion of CD34(+) cells at passage 2, as compared with cells isolated from subcutaneous fat or the omentum. Furthermore, ASCs from subcutaneous and pericardial adipose tissue demonstrated enhanced adipogenic differentiation capacity, whereas ASCs isolated from the omentum displayed the highest levels of osteogenic markers in culture. Through cell culture analysis under hypoxic (5% O(2)) conditions, oxygen tension was shown to be a key mediator of colony-forming unit-fibroblast number and osteogenesis for all depots. Overall, our results suggest that depot selection is an important factor to consider when applying ASCs in tissue-specific cell-based regenerative therapies, and also highlight pericardial adipose tissue as a potential new ASC source.


Assuntos
Gordura Intra-Abdominal/citologia , Células-Tronco Multipotentes/citologia , Omento/citologia , Medicina Regenerativa/métodos , Gordura Subcutânea/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Proliferação de Células , Células Cultivadas , Células Clonais/citologia , Humanos , Osteócitos/citologia , Pericárdio/citologia , Timo/citologia
10.
Tissue Eng Part C Methods ; 19(11): 829-38, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23448167

RESUMO

Extracting high-quality RNA from hydrogels containing polysaccharide components is challenging, as traditional RNA isolation techniques designed for cells and tissues can have limited yields and purity due to physiochemical interactions between the nucleic acids and the biomaterials. In this study, a comparative analysis of several different RNA isolation methods was performed on human adipose-derived stem cells photo-encapsulated within methacrylated glycol chitosan hydrogels. The results demonstrated that RNA isolation methods with cetyl trimethylammonium bromide (CTAB) buffer followed by purification with an RNeasy® mini kit resulted in low yields of RNA, except when the samples were preminced directly within the buffer. In addition, genomic DNA contamination during reverse transcriptase-polymerase chain reaction (RT-PCR) analysis was observed in the hydrogels processed with the CTAB-based methods. Isolation methods using TRIzol® in combination with one of a Qiaex® gel extraction kit, an RNeasy® mini kit, or an extended solvent purification method extracted RNA suitable for gene amplification, with no evidence of genomic contamination. The latter two methods yielded the best results in terms of yield and amplification efficiency. Predigestion of the scaffolds with lysozyme was investigated as a possible means of enhancing RNA extraction from the polysaccharide gels, with no improvements observed in terms of the purity, yield, or amplification efficiency. Overall, this work highlights the application of a TRIzol®+extended solvent purification method for optimizing RNA extraction that can be applied to obtain reliable and accurate gene expression data in studies investigating cells seeded in chitosan-based scaffolds.


Assuntos
Bioquímica/métodos , Quitosana/química , Hidrogéis/química , RNA/isolamento & purificação , Tecido Adiposo/citologia , Células Imobilizadas/metabolismo , Contaminação por DNA , Regulação da Expressão Gênica , Genoma Humano/genética , Humanos , PPAR gama/genética , PPAR gama/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/citologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...