Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Oncol Biol Phys ; 18(3): 659-69, 1990 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-2318700

RESUMO

Total-Skin Electron Therapy (TSET) modalities have been developed at two energies on a Varian Clinac 1800. The physical criteria for the beams were determined mainly from the requirement of continuing the Stanford treatment technique, which was 12 Total-Skin Electron Therapy portals combined in six pairs. The penetration of the lower energy mode matches that previously obtained at Stanford on the Varian Clinac 10, (about 4 mm for the 80% isodose contour in the 12-field treatment). The penetration of the higher energy mode is about 8 mm at the 80% contour. The Total-Skin Electron Therapy modes necessarily use electrons produced by the two standard electron-beam modes of lowest energy, nominally 6 and 9 MeV. Measurements to verify the beam specifications were carried out with diodes, a variety of ionization chambers, and a specially constructed circular phantom for film dosimetry. Initially, the penetration of the Total-Skin Electron Therapy beams was too large to match our criteria, so two methods of reducing it were explored: (a) the energies of the electron beams produced by the machine were reduced (which also reduced the energies of the corresponding standard electron modes) and (b) a large polymethylmethacrylate degrader (2.4 m X 1.2 m) 1 cm thick was placed just in front of the patient plane. Acceptable Total-Skin Electron Therapy beams could be produced by either method and the latter was finally used. The use of the standard dose monitoring system for the Total-Skin Electron Therapy modes considerably simplifies the daily treatment delivery as well as the implementation. However, the need for reasonable dose rates at the treatment plane (3.5 meters beyond the isocenter) requires dose rates of 24 Gy/min at the isocenter. Nevertheless, it is possible to use the internal dose monitor provided the problems associated with high dose rates (recombination and amplifier saturation) are addressed. Solutions to these problems involved switching the primary and back-up dose monitors, increasing the collecting voltage on the ion chambers, and calibrating the dose monitor so that 1 unit = 1 cGy at the patient rather than at the isocenter.


Assuntos
Elétrons , Aceleradores de Partículas , Dermatopatias/radioterapia , Humanos
4.
Phys Med Biol ; 23(5): 989-92, 1978 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-715014
5.
Phys Med Biol ; 18(6): 881-3, 1973 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-4778451
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...