Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 5553, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020132

RESUMO

The role of ocean variability is at a focal point in improving the weather and climate forecasts at different spatial and temporal scales. We study the effect of antecedent southwestern Indian Ocean mean sea level anomaly (MSLA) and sea surface temperature anomalies (SSTA) as a proxy to upper ocean heat capacitance on all India summer monsoon rainfall (AISMR) during 1993-2019. SSTA and MSLA over the southwestern Indian Ocean (SWIO) have been influenced by El Niño-Southern Oscillation (ENSO), the impact of ENSO-induced SWIO variability was low on rainfall variability over several homogeneous regions. Rainfall over northeast (NE) and North India (EI) has been modulated by ENSO-induced SSTA and MSLA over SWIO, thus effecting the total AISMR magnitude. The ENSO-induced changes in heat capacitance (SSTA and MSLA) over SWIO during antecedent months has less impact on west coast of India, central India and North India (NI) rainfall variability. The long-term trend in pre-monsoonal SSTA and MSLA over SWIO shows decreasing rainfall trend over NI, NE, and EI in the recent time. Furthermore, the cooler (warmer) anomaly over the western Indian Ocean affects rainfall variability adversely (favourably) due to the reversal of the wind pattern during the pre-monsoon period. While SSTA and MSLA are increasing in the SWIO, large-scale variability of these parameters during preceding winter and pre-monsoon months combined with surface winds could impact the inter-annual AISMR variability over homogeneous regions of India. Similarly, from an oceanic perspective, the antecedent heat capacitance over SWIO on an inter-annual time scale has been the key to the extreme monsoon rainfall variability.

2.
Eur J Pharm Biopharm ; 177: 100-106, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35750108

RESUMO

In this study we examined how outdoor climate affects indoor conditions of a cleanroom used for the preparation of radiopharmaceuticals in the Uppsala university hospital pharmacy, Sweden. Further objectives were to identify associated risk factors to ensure a consistent extemporaneous manufacturing process. Data for two years from the facility monitoring system (with one minute resolution for temperature, relative humidity (%RH), differential pressure) were compared with meteorological outdoor data from Uppsala (Swedish Meteorological and Hydrological Institute, 60-minute mean data for temperature, relative humidity, wind speed and air pressure). The findings of this study indicate a linear relationship between indoor and outdoor temperature for the autumn, winter and spring seasons. The typical summer outdoor diurnal pattern is also seen for indoor temperature. During the study period, the minimum outdoor temperature was -17.5 °C and the maximum 31.4 °C. This wide temperature range also entails a wide range of air humidity from 10 %RH to 100 %RH indoors. Cleanroom temperature and %RH are factors that may affect the quality of medications, especially the risk of microbiological growth in aseptic processes, stability of medications during storage but also may affect handling of for example uncoated tablets or weighing of powder, especially at high %RH for hygroscopic drugs or at low %RH due to static electricity. Further the risk of damage on electrical equipment from electrostatic discharge at low %RH is discussed with a focus on the need for humidity control of cleanrooms and/or systems for mitigation of electrostatic discharge in climates with outdoor temperature in the wintertime below freezing point.


Assuntos
Serviço de Farmácia Hospitalar , Monitoramento Ambiental , Humanos , Umidade , Estações do Ano , Suécia , Temperatura
3.
Limnol Oceanogr ; 66(3): 827-854, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33888916

RESUMO

The hydrodynamics within small boreal lakes have rarely been studied, yet knowing whether turbulence at the air-water interface and in the water column scales with metrics developed elsewhere is essential for computing metabolism and fluxes of climate-forcing trace gases. We instrumented a humic, 4.7 ha, boreal lake with two meteorological stations, three thermistor arrays, an infrared (IR) camera to quantify surface divergence, obtained turbulence as dissipation rate of turbulent kinetic energy (ε) using an acoustic Doppler velocimeter and a temperature-gradient microstructure profiler, and conducted chamber measurements for short periods to obtain fluxes and gas transfer velocities (k). Near-surface ε varied from 10-8 to 10-6 m2 s-3 for the 0-4 m s-1 winds and followed predictions from Monin-Obukhov similarity theory. The coefficient of eddy diffusivity in the mixed layer was up to 10-3 m2 s-1 on the windiest afternoons, an order of magnitude less other afternoons, and near molecular at deeper depths. The upper thermocline upwelled when Lake numbers (L N ) dropped below four facilitating vertical and horizontal exchange. k computed from a surface renewal model using ε agreed with values from chambers and surface divergence and increased linearly with wind speed. Diurnal thermoclines formed on sunny days when winds were < 3 m s-1, a condition that can lead to elevated near-surface ε and k. Results extend scaling approaches developed in the laboratory and for larger water bodies, illustrate turbulence and k are greater than expected in small wind-sheltered lakes, and provide new equations to quantify fluxes.

5.
Ambio ; 47(3): 368-378, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28983824

RESUMO

International regulation of the emission of acidic sulphur and nitrogen oxides from commercial shipping has focused on the risks to human health, with little attention paid to the consequences for the marine environment. The introduction of stricter regulations in northern Europe has led to substantial investment in scrubbers that absorb the sulphur oxides in a counterflow of seawater. This paper examines the consequences of smokestack and scrubber release of acidic oxides in the Baltic Sea according to a range of scenarios for the coming decades. While shipping is projected to become a major source of strong acid deposition to the Baltic Sea by 2050, the long-term effect on the pH and alkalinity is projected to be significantly smaller than estimated from previous scoping studies. A significant contribution to this difference is the efficient export of surface water acidification to the North Sea on a timescale of 15-20 years.


Assuntos
Água do Mar/química , Navios , Países Bálticos , Europa (Continente) , Concentração de Íons de Hidrogênio , Mar do Norte , Oceanos e Mares
6.
Sci Rep ; 7(1): 5449, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710411

RESUMO

Stochastic weather generators can generate very long time series of weather patterns, which are indispensable in earth sciences, ecology and climate research. Yet, both their potential and limitations remain largely unclear because past research has typically focused on eclectic case studies at small spatial scales in temperate climates. In addition, stochastic multi-site algorithms are usually not publicly available, making the reproducibility of results difficult. To overcome these limitations, we investigated the performance of the reduced-complexity multi-site precipitation generator TripleM across three different climatic regions in the United States. By resampling observations, we investigated for the first time the performance of a multi-site precipitation generator as a function of the extent of the gauge network and the network density. The definition of the role of the network density provides new insights into the applicability in data-poor contexts. The performance was assessed using nine different statistical metrics with main focus on the inter-annual variability of precipitation and the lengths of dry and wet spells. Among our study regions, our results indicate a more accurate performance in wet temperate climates compared to drier climates. Performance deficits are more marked at larger spatial scales due to the increasing heterogeneity of climatic conditions.

7.
Ambio ; 43(1): 49-59, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24414804

RESUMO

Past, present, and possible future changes in the Baltic Sea acid-base and oxygen balances were studied using different numerical experiments and a catchment-sea model system in several scenarios including business as usual, medium scenario, and the Baltic Sea Action Plan. New CO2 partial pressure data provided guidance for improving the marine biogeochemical model. Continuous CO2 and nutrient measurements with high temporal resolution helped disentangle the biogeochemical processes. These data and modeling indicate that traditional understandings of the nutrient availability-organic matter production relationship do not necessarily apply to the Baltic Sea. Modeling indicates that increased nutrient loads will not inhibit future Baltic Sea acidification; instead, increased mineralization and biological production will amplify the seasonal surface pH cycle. The direction and magnitude of future pH changes are mainly controlled by atmospheric CO2 concentration. Apart from decreasing pH, we project a decreasing calcium carbonate saturation state and increasing hypoxic area.


Assuntos
Dióxido de Carbono/análise , Oxigênio/análise , Água do Mar/análise , Países Bálticos , Sedimentos Geológicos/análise , Concentração de Íons de Hidrogênio , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...