Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2018): 20232518, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38444335

RESUMO

Mate recognition is paramount for sexually reproducing animals, and many insects rely on cuticular hydrocarbons (CHCs) for close-range sexual communication. To ensure reliable mate recognition, intraspecific sex pheromone variability should be low. However, CHCs can be influenced by several factors, with the resulting variability potentially impacting sexual communication. While intraspecific CHC variability is a common phenomenon, the consequences thereof for mate recognition remain largely unknown. We investigated the effect of CHC variability on male responses in a parasitoid wasp showing a clear-cut within-population CHC polymorphism (three distinct female chemotypes, one thereof similar to male profiles). Males clearly discriminated between female and male CHCs, but not between female chemotypes in no-choice assays. When given a choice, a preference hierarchy emerged. Interestingly, the most attractive chemotype was the one most similar to male profiles. Mixtures of female CHCs were as attractive as chemotype-pure ones, while a female-male mixture negatively impacted male responses, indicating assessment of the entire, complex CHC profile composition. Our study reveals that the evaluation of CHC profiles can be strict towards 'undesirable' features, but simultaneously tolerant enough to cover a range of variants. This reconciles reliable mate recognition with naturally occurring variability.


Assuntos
Reprodução , Atrativos Sexuais , Feminino , Masculino , Animais , Comunicação , Polimorfismo Genético , Reconhecimento Psicológico
2.
Environ Toxicol Chem ; 42(11): 2400-2411, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37477474

RESUMO

Lethal and sublethal effects of pesticides on nontarget organisms are one of the causes of the current decline of many insect species. However, research in the past decades has focused primarily on pollinators, although other beneficial nontarget organisms such as parasitic wasps may also be affected. We studied the sublethal effects of the four insecticides acetamiprid, dimethoate, flupyradifurone, and sulfoxaflor on pheromone-mediated sexual communication and olfactory host finding of the parasitic wasp Nasonia vitripennis. All agents target cholinergic neurons, which are involved in the processing of chemical information by insects. We applied insecticide doses topically and tested the response of treated wasps to sex pheromones and host-associated chemical cues. In addition, we investigated the mating rate of insecticide-treated wasps. The pheromone response of females surviving insecticide treatment was disrupted by acetamiprid (≥0.63 ng), dimethoate (≥0.105 ng), and flupyradifurone (≥21 ng), whereas sulfoxaflor had no significant effects at the tested doses. Olfactory host finding was affected by all insecticides (acetamiprid ≥1.05 ng, dimethoate ≥0.105 ng, flupyradifurone ≥5.25 ng, sulfoxaflor ≥0.52 ng). Remarkably, females treated with ≥0.21 ng dimethoate even avoided host odor. The mating rate of treated N. vitripennis couples was decreased by acetamiprid (6.3 ng), flupyradifurone (≥2.63 ng), and sulfoxaflor (2.63 ng), whereas dimethoate showed only minor effects. Finally, we determined the amount of artificial nectar consumed by N. vitripennis females within 48 h. Considering this amount (∼2 µL) and the maximum concentrations of the insecticides reported in nectar, tested doses can be considered field-realistic. Our results suggest that exposure of parasitic wasps to field-realistic doses of insecticides targeting the cholinergic system reduces their effectiveness as natural enemies by impairing the olfactory sense. Environ Toxicol Chem 2023;42:2400-2411. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Inseticidas , Atrativos Sexuais , Vespas , Animais , Feminino , Vespas/fisiologia , Inseticidas/toxicidade , Dimetoato , Néctar de Plantas , Atrativos Sexuais/farmacologia , Atrativos Sexuais/fisiologia , Neurônios Colinérgicos
3.
Commun Biol ; 6(1): 183, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797462

RESUMO

Many parasites interfere with the behaviour of their hosts. In social animals, such as ants, parasitic interference can cause changes on the level of the individual and also on the level of the society. The ant-parasitic fungus Rickia wasmannii influences the behaviour of Myrmica ants by expanding the host's nestmate recognition template, thereby increasing the chance of the colony accepting infected non-nestmates. Infected ants consistently show an increase of the alkane tricosane (n-C23) in their cuticular hydrocarbon profiles. Although experimental application of single compounds often elicits aggression towards manipulated ants, we hypothesized that the increase of n-C23 might underlie the facilitated acceptance of infected non-nestmates. To test this, we mimicked fungal infection in M. scabrinodis by applying synthetic n-C23 to fresh ant corpses and observed the reaction of infected and uninfected workers to control and manipulated corpses. Infected ants appeared to be more peaceful towards infected but not uninfected non-nestmates. Adding n-C23 to uninfected corpses resulted in reduced aggression in uninfected ants. This supports the hypothesis that n-C23 acts as a 'pacifying' signal. Our study indicates that parasitic interference with the nestmate discrimination of host ants might eventually change colony structure by increasing genetic heterogeneity in infected colonies.


Assuntos
Formigas , Micoses , Animais , Agressão , Hidrocarbonetos , Cadáver
4.
J Chem Ecol ; 49(1-2): 36-45, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36705801

RESUMO

Cuticular hydrocarbons (CHCs) are major constituents of the cuticular lipid layer of insects. They serve not only as a barrier to desiccation, but often additionally mediate communication at close range. The compositions of the CHC profiles, i.e., the specific compounds and their relative amounts, usually differ between species. Additional intraspecific variability can be found between different populations, between colonies and castes of social insects, and between the sexes. Thus, such groups can often be distinguished based on distinctive compounds and/or specific compound ratios. The CHC profile may further be influenced by biotic and abiotic factors, which therefore can impact, e.g., nestmate recognition or mate choice. However, consistent intrasexual variation seems to be rare. Here, we investigated a case of intrasexual CHC variability within a single population of a parasitoid wasp. While wasps of both sexes produced the same set of compounds, the relative amounts of specific compound classes revealed the presence of intrasexual chemical phenotypes. This is, to our knowledge, the first report of three distinct female CHC profile patterns within a population of a solitary insect that uses CHCs for mate recognition. Additionally, male CHC profiles, while overall very similar, could be separated into two chemotypes by multivariate analysis. The study of species exhibiting such intraspecific and intrasexual CHC variation will advance our understanding of the effects of CHC variability on both, desiccation resistance and intraspecific communication.


Assuntos
Vespas , Animais , Masculino , Feminino , Vespas/química , Hidrocarbonetos/química , Insetos , Análise Multivariada , Fenótipo
5.
Proc Biol Sci ; 289(1972): 20220208, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35414234

RESUMO

Parasitic wasps have long been thought to be unable to synthesize fatty acids de novo, but recent 13C-labelling studies have challenged this view. It remained unclear, however, whether the reported biosynthesis rates are of biological relevance. Here, we show in Nasonia vitripennis that ageing females with partly depleted lipid reserves produce biologically relevant amounts of fatty acids de novo. Females with varying oviposition history (0-48 h) prior to feeding 20% 13C-labelled glucose solution showed 13C-incorporation rates of (mean ± SEM) 30 ± 2%, 50 ± 2%, 49 ± 3% and 21 ± 2% in palmitic, stearic, oleic and linoleic acid, respectively. The absolute amounts of fatty acids synthesized de novo across treatments corresponded to 28 ± 3 egg lipid equivalents. Females incorporated de novo synthesized fatty acids into their eggs, and glucose-fed females laid more eggs than water-fed control females. The number of eggs laid prior to glucose feeding did not correlate with the degree of lipogenesis, but the amounts of de novo synthesized fatty acids correlated with constitutive (not synthesized de novo) fatty acids. Hence, glucose feeding has a twofold effect on the fatty acid status of N. vitripennis females by decelerating the catabolism of existing fat reserves and partially replenishing ebbing fat reserves by lipogenesis.


Assuntos
Lipogênese , Vespas , Animais , Ácidos Graxos , Feminino , Glucose/metabolismo , Ácido Linoleico/metabolismo
6.
Proc Biol Sci ; 289(1967): 20212002, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35078369

RESUMO

Doublesex (Dsx) has a conserved function in controlling sexual morphological differences in insects, but our knowledge of its role in regulating sexual behaviour is primarily limited to Drosophila. Here, we show with the parasitoid wasp Nasonia vitripennis that males whose Dsx gene had been silenced (NvDsx-i) underwent a three-level pheromonal feminization: (i) NvDsx-i males were no longer able to attract females from a distance, owing to drastically reduced titres of the long-range sex pheromone; (ii) NvDsx-i males were courted by wild-type males as though they were females, which correlated with a lower abundance of alkenes in their cuticular hydrocarbon (CHC) profiles. Supplementation with realistic amounts of synthetic (Z)-9-hentriacontene (Z9C31), the most significantly reduced alkene in NvDsx-i males, to NvDsx-i males interrupted courtship by wild-type conspecific males. Supplementation of female CHC profiles with Z9C31 reduced courtship and mating attempts by wild-type males. These results prove that Z9C31 is crucial for sex discrimination in N. vitripennis; and (iii) Nvdsx-i males were hampered in eliciting female receptivity and thus experienced severely reduced mating success, suggesting that they are unable to produce the to-date unidentified oral aphrodisiac pheromone reported in N. vitripennis males. We conclude that Dsx is a multi-level key regulator of pheromone-mediated sexual communication in N. vitripennis.


Assuntos
Atrativos Sexuais , Vespas , Animais , Corte , Feminino , Feminização , Humanos , Hidrocarbonetos/metabolismo , Masculino , Feromônios/metabolismo , Atrativos Sexuais/metabolismo , Comportamento Sexual Animal/fisiologia , Vespas/genética
7.
Proc Biol Sci ; 288(1951): 20210548, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34034524

RESUMO

Fatty acids are crucial primary metabolites for virtually all creatures on earth. Most organisms thus do not rely exclusively on a nutritional supply containing fatty acids, but have the ability to synthesize fatty acids and triacylglycerides de novo from carbohydrates in a process called lipogenesis. The ubiquity of lipogenesis has been questioned by a series of studies reporting that many parasitic wasps (parasitoids) do not accumulate lipid mass despite having unlimited access to sugar. This has been interpreted as an evolutionary metabolic trait loss in parasitoids. Here, we demonstrate de novo biosynthesis of fatty acids from 13C-labelled α-d-glucose in 13 species of parasitoids from seven families. We furthermore show in the model organism Nasonia vitripennis that lipogenesis occurs even when lipid reserves are still intact, but relative 13C-incorporation rates increase in females with widely depleted fat reserves. We therefore conclude that the presumed 'lack of lipogenesis' in parasitoids needs to be re-evaluated.


Assuntos
Parasitos , Vespas , Animais , Evolução Biológica , Ácidos Graxos , Feminino , Humanos , Lipogênese
8.
Arch Insect Biochem Physiol ; 107(2): e21788, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33817829

RESUMO

Linoleic acid (C18:2∆9,12 , LA) is an important metabolite with numerous essential functions for growth, health, and reproduction of organisms. It has long been assumed that animals lack ∆12-desaturases, the enzymes needed to produce LA from oleic acid (C18:1∆9 , OA). There is, however, increasing evidence that this is not generally true for invertebrates. In the insect order Hymenoptera, LA biosynthesis has been shown for only two parasitic wasp species of the so-called "Nasonia group," but it is unknown whether members of other taxa are also capable of synthesizing LA. Here, we demonstrate LA biosynthesis in 13 out of 14 species from six families of parasitic wasps by gas chromatography-mass spectrometry analysis using two different stable isotope labeling techniques. Females of the studied species converted topically applied fully 13 C-labeled OA into LA and/or produced labeled LA after feeding on fully 13 C-labeled α- d-glucose. These results indicate that ∆12-desaturases are widespread in parasitic Hymenoptera and confirm previous studies demonstrating that these insects are capable of synthesizing fatty acids de novo.


Assuntos
Ácido Linoleico/biossíntese , Vespas/metabolismo , Animais , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ácido Linoleico/química , Atrativos Sexuais/metabolismo
9.
PLoS One ; 16(1): e0245698, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33471848

RESUMO

Administration of defined amounts of bioactive substances is a perseverative problem in physiological studies on insects. Apart from feeding and injection, topical application of solutions of the chemicals is most commonly used for this purpose. The solvents used should be non-toxic and have least possible effects on the studied parameters. Acetone is widely used for administration of chemical substances to insects, but possible side-effects of acetone application on fitness and behavioral parameters have been rarely investigated. Here we study the effects of acetone application (207 nl) on fitness and sexual communication in the parasitic wasp Nasonia giraulti Darling. Application of acetone had neither negative effects on longevity nor on offspring number and offspring sex ratio of treated wasps. Treatment of females hampered courtship and mating of N. giraulti couples neither directly after application nor one day after. Male sex pheromone titers were not influenced by acetone treatment. Three application examples demonstrate that topical acetone application is capable of bringing active amounts of insect hormones, neuromodulators, and biosynthetic precursors even in tiny insects. We advocate the use of acetone as a convenient, conservative, and broadly applicable vehicle for studying the effects of bioactive substances in insects.


Assuntos
Acetona/farmacologia , Longevidade/efeitos dos fármacos , Atrativos Sexuais/farmacologia , Comportamento Sexual Animal/efeitos dos fármacos , Vespas/fisiologia , Animais , Feminino , Masculino , Atrativos Sexuais/metabolismo
10.
Org Biomol Chem ; 18(18): 3463-3465, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32319498

RESUMO

Males of the parasitoid wasp Urolepis rufipes use 2,6-dimethyl-7-octene-1,6-diol as a sex pheromone to attract virgin females. Herein, we determine the absolute configuration of the pheromone to be (2S,6S)-2,6-dimethyl-7-octene-1,6-diol (2S,6S-6) and present a stereoselective synthesis of the natural enantiomer of this new linalool derivative. In addition, we show that female wasps respond to the natural 2S,6S-6 stereoisomer while 2R,6S-6 is behaviorally inactive.


Assuntos
Feromônios/síntese química , Animais , Masculino , Estrutura Molecular , Feromônios/química , Atrativos Sexuais , Estereoisomerismo , Vespas
11.
J Exp Biol ; 223(Pt 6)2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32098887

RESUMO

Social insect societies are characterized by division of labour and communication within the colony. The most frequent mode of communication is by chemical signals. In general, pheromones elicit specific responses in the receiver, although reactions may vary depending on the receiving individual's physiological or motivational state. For example, it has been shown that pheromones can elicit different responses in morphological worker castes. However, comparably little is known about such effects in worker castes of monomorphic species. Here, we comprehensively studied a monomorphic species showing age polyethism, the thelytokous ant Platythyrea punctata Our analyses revealed that the species' alarm pheromone consists of (S)-(-)-citronellal and (S)-(-)-actinidine, and is produced in the mandibular glands. Ants responded with increased movement activity and increasing ant density towards the pheromone source in whole-colony bioassays, confirming the alarming effect of these compounds. We found age classes to differ in their absolute pheromone content, in the propensity to release alarm pheromone upon disturbance and in their reaction towards the pheromone. Absolute amounts of pheromone content may differ simply because the biosynthesis of the pheromone begins only after adult eclosion. Nonetheless, our results indicate that this clonal species exhibits age-related polyethism in the emission of as well as in the response to its alarm pheromone.


Assuntos
Formigas , Animais , Comportamento Animal , Bioensaio , Feromônios
12.
Insect Biochem Mol Biol ; 115: 103256, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31655163

RESUMO

Fatty acids are indispensable primary metabolites for virtually any organism on earth and thus enzymatic machinery enabling de novo production of fatty acids from carbohydrates is highly conserved. A series of studies has questioned the ubiquity of lipogenesis in parasitoid wasps suggesting that the vast majority of species have lost the ability to synthesize fatty acids de novo. One such species is Nasonia vitripennis, which, like the congeneric species N. giraulti and N. longicornis, uses a fatty acid-derived male sex pheromone for sexual communication. Here we demonstrate by feeding fully 13C-labeled α-D-glucose and analyzing insect-derived fatty acid methyl esters and the male sex pheromone by coupled gas chromatography/mass spectrometry that both males and females of N. vitripennis as well as N. giraulti and N. longicornis are capable of synthesizing fatty acids de novo. We furthermore show by a proteomics approach that predicted fatty acid synthase, ATP-citrate synthase, and acetyl-CoA carboxylase, key enzymes of lipogenesis, are expressed in the male pheromone gland of N. vitripennis and N. giraulti. Labeling experiments with Urolepis rufipes, a closely related species producing a male sex pheromone independently of fatty acids via the mevalonate pathway, revealed that both sexes are likewise able to synthesize fatty acids de novo. We conclude that the parasitoid wasp species studied here, irrespective of the biosynthetic origin of their sex pheromones, are capable of responding flexibly to lipid shortage during their adult life by keeping enzymatic machinery for lipogenesis running.


Assuntos
Ácidos Graxos/biossíntese , Glucose/metabolismo , Vespas/metabolismo , Animais , Isótopos de Carbono , Feminino , Masculino , Atrativos Sexuais/metabolismo
13.
Elife ; 82019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31182189

RESUMO

Detrimental microbes caused the evolution of a great diversity of antimicrobial defenses in plants and animals. Insects developing underground seem particularly threatened. Here we show that the eggs of a solitary digger wasp, the European beewolf Philanthus triangulum, emit large amounts of gaseous nitric oxide (NO⋅) to protect themselves and their provisions, paralyzed honeybees, against mold fungi. We provide evidence that a NO-synthase (NOS) is involved in the generation of the extraordinary concentrations of nitrogen radicals in brood cells (~1500 ppm NO⋅ and its oxidation product NO2⋅). Sequencing of the beewolf NOS gene revealed no conspicuous differences to related species. However, due to alternative splicing, the NOS-mRNA in beewolf eggs lacks an exon near the regulatory domain. This preventive external application of high doses of NO⋅ by wasp eggs represents an evolutionary key innovation that adds a remarkable novel facet to the array of functions of the important biological effector NO⋅.


Assuntos
Radicais Livres/metabolismo , Fungos/crescimento & desenvolvimento , Óxido Nítrico/metabolismo , Óvulo/metabolismo , Vespas/metabolismo , Animais , Anti-Infecciosos/metabolismo , Anti-Infecciosos/toxicidade , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/fisiologia , Radicais Livres/toxicidade , Fungos/efeitos dos fármacos , Fungos/fisiologia , Óxido Nítrico/toxicidade , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Simbiose/efeitos dos fármacos , Vespas/genética , Vespas/microbiologia
14.
J Exp Biol ; 222(Pt 10)2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31019064

RESUMO

Insect pheromones are often derived from fatty acid metabolism. Fatty acid desaturases, enzymes introducing double bonds into fatty acids, are crucial for the biosynthesis of these chemical signals. Δ12-desaturases catalyse the biosynthesis of linoleic acid by introducing a second double bond into oleic acid, but have been identified in only a few animal species. Here, we report the functional characterisation of two Δ12-desaturases, Nvit_D12a and Nvit_D12b, from the parasitic wasp Nasonia vitripennis. We demonstrate that Nvit_D12a is expressed in the rectal vesicle of males where they produce a linoleic acid-derived sex pheromone to attract virgin females. 13C-labelling experiments with Urolepis rufipes, a closely related species belonging to the 'Nasonia group', revealed that females, but not males, are able to synthesise linoleic acid. U. rufipes males produce an isoprenoid sex pheromone in the same gland and do not depend on linoleic acid for pheromone production. This suggests that Δ12-desaturases are common in the 'Nasonia group', but acquired a specialised function in chemical communication of those species that use linoleic acid as a pheromone precursor. Phylogenetic analysis suggests that insect Δ12-desaturases have evolved repeatedly from Δ9-desaturases in different insect taxa. Hence, insects have developed a way to produce linoleic acid independent of the omega desaturase subfamily which harbours all of the eukaryotic Δ12-desaturases known so far.


Assuntos
Ácidos Graxos Dessaturases/genética , Proteínas de Insetos/genética , Ácido Linoleico/metabolismo , Atrativos Sexuais/biossíntese , Vespas/metabolismo , Animais , Ácidos Graxos Dessaturases/metabolismo , Feminino , Proteínas de Insetos/metabolismo , Masculino
15.
J Chem Ecol ; 45(3): 241-252, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30756216

RESUMO

Deciphering the processes driving the evolution of the diverse pheromone-mediated chemical communication system of insects is a fascinating and challenging task. Understanding how pheromones have arisen has been supported by studies with the model organism Leptopilina heterotoma, a parasitoid wasp whose defensive compound (-)-iridomyrmecin also evolved as a component of the female sex pheromone and as a cue to avoid competition with other females during host search. To understand how compounds can evolve from being non-communicative to having a communicative function and to shed light on the evolution of the multi-functional use of iridomyrmecin in the genus Leptopilina, the chemical communication of two additional species, L. ryukyuensis and L. japonica, was studied. We demonstrate that in both species a species-specific mixture of iridoids is produced and emitted by wasps upon being attacked, consistent with their putative role as defensive compounds. In L. ryukyuensis these iridoids are also used by females to avoid host patches already exploited by other conspecific females. However, females of L. japonica do not avoid the odor of conspecific females during host search. We also show that the sex pheromone of female L. ryukyuensis consists of cuticular hydrocarbons (CHCs), as males showed strong courtship behavior (wing fanning) towards these compounds, but not towards the iridoid compounds. In contrast, males of L. japonica prefer their females' iridoids but CHCs also elicit some courtship behavior. The use of iridoid compounds as defensive allomones seems to be common in the genus Leptopilina, while their communicative functions appear to have evolved in a species-specific manner.


Assuntos
Drosophila/parasitologia , Himenópteros/fisiologia , Atrativos Sexuais/fisiologia , Comportamento Sexual Animal , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Himenópteros/classificação , Masculino , Especificidade da Espécie
16.
Sci Rep ; 9(1): 330, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674966

RESUMO

Males of the parasitic wasp genus Nasonia use blends of chiral hydroxylactones as sex pheromones to attract conspecific females. Whereas all Nasonia species use a mixture of (4R,5S)-5-hydroxy-4-decanolide (RS) and 4-methylquinazoline (MQ) as sex pheromones, Nasonia vitripennis evolved (4R,5R)-5-hydroxy-4-decanolide (RR) as an extra sex pheromone component. We recently identified and functionally characterized three short-chain dehydrogenases/reductases (SDRs) NV10127, NV10128, and NV10129 that are capable of catalyzing the epimerization of RS to RR via (4R)-5-oxo-4-decanolide (ODL) as intermediate. Despite their very high sequence identities of 88-98%, these proteins differ drastically in their ability to epimerize RS to RR and in their stereoselectivity when reducing ODL to RR/RS. Here, in order to unravel the sequence differences underlying these varying functional properties of NV1027, NV10128 and NV10129, we created chimeras of the three enzymes and monitored their catalytic activities in vitro. The results show that a few amino acid changes at the C-termini and active sites of Nasonia vitripennis SDRs lead to substantially altered RS to RR epimerization and ODL-reduction activities. Thus, our study adds to the understanding of pheromone evolution by showing that subtle mutations in key biosynthetic enzymes can result in drastic effects on the composition of chemical signals.


Assuntos
Aminoácidos/genética , Aminoácidos/metabolismo , Atrativos Sexuais/biossíntese , Redutases-Desidrogenases de Cadeia Curta/genética , Redutases-Desidrogenases de Cadeia Curta/metabolismo , Vespas/enzimologia , Animais , Análise Mutacional de DNA , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Recombinação Genética , Especificidade por Substrato
17.
Insects ; 9(3)2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30200429

RESUMO

Interspecific sexual interactions are not uncommon in animals. In sympatry, females often face the risk of accidentally mating with a heterospecific male. Based on the actual risks imposed by the environment at a given time and place, females should be able to adjust their mate acceptance in order to avoid interspecific copulations as well as accidentally refusing to mate with a conspecific. We investigate the ability of females of the two parasitoid wasp species Nasonia vitripennis (Nv) and N. longicornis (Nl) to adjust their mate acceptance in response to previous unsuccessful courtship by heterospecific males. We show that Nl females are more reluctant to mate with a conspecific male when having been courted previously by a heterospecific male, but Nv females are not. We argue that this strategy is reasonable for Nl females but not for Nv females, which follow a different strategy to avoid the fitness costs imposed by heterospecific copulations.

18.
Front Behav Neurosci ; 12: 14, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441003

RESUMO

The olfactory sense is of crucial importance for animals, but their response to chemical stimuli is plastic and depends on their physiological state and prior experience. In many insect species, mating status influences the response to sex pheromones, but the underlying neuromodulatory mechanisms are poorly understood. After mating, females of the parasitic wasp Nasonia vitripennis are no longer attracted to the male sex pheromone. Here we show that this post-mating behavioral switch is mediated by dopamine (DA). Females fed a DA-receptor antagonist prior to mating maintained their attraction to the male pheromone after mating while virgin females injected with DA became unresponsive. However, the switch is reversible as mated females regained their pheromone preference after appetitive learning. Feeding mated N. vitripennis females with antagonists of either octopamine- (OA) or DA-receptors prevented relearning of the pheromone preference suggesting that both receptors are involved in appetitive learning. Moreover, DA injection into mated females was sufficient to mimic the oviposition reward during odor conditioning with the male pheromone. Our data indicate that DA plays a key role in the plastic pheromone response of N. vitripennis females and reveal some striking parallels between insects and mammals in the neuromodulatory mechanisms underlying olfactory plasticity.

19.
Sci Rep ; 8(1): 321, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321506

RESUMO

According to current evolutionary theory, insect pheromones can originate from extant precursor compounds being selected for information transfer. This is exemplified by females of the parasitoid wasp Leptopilina heterotoma whose defensive secretion consisting mainly of (-)-iridomyrmecin has evolved secondary functions as cue to avoid other females during host search and as female sex pheromone. To promote our understanding of pheromone evolution from defensive secretions we studied the chemical ecology of Leptopilina clavipes. We show here that L. clavipes also produces a defensive secretion that contains (-)-iridomyrmecin as major component and that females use it to detect and avoid host patches occupied by other females. However, the female sex pheromone of L. clavipes consists solely of cuticular hydrocarbons (CHCs) and males did not respond to female CHCs if presented in combination with the defensive secretion containing (-)-iridomyrmecin. This is in contrast to other species of Leptopilina, in which the iridoid compounds have no inhibiting effect or even function as sex pheromone triggering courtship behaviour. This indicates that Leptopilina species differ in the cost-benefit ratio for males searching for females, which might explain the strong divergence in the composition of the sex pheromone in the genus.


Assuntos
Evolução Molecular , Atrativos Sexuais/metabolismo , Comportamento Sexual Animal , Vespas/fisiologia , Animais , Feminino , Iridoides/metabolismo , Masculino , Atrativos Sexuais/genética , Vespas/genética
20.
New Phytol ; 220(3): 739-749, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-28256726

RESUMO

Chemical communication is ubiquitous. The identification of conserved structural elements in visual and acoustic communication is well established, but comparable information on chemical communication displays (CCDs) is lacking. We assessed the phenotypic integration of CCDs in a meta-analysis to characterize patterns of covariation in CCDs and identified functional or biosynthetically constrained modules. Poorly integrated plant CCDs (i.e. low covariation between scent compounds) support the notion that plants often utilize one or few key compounds to repel antagonists or to attract pollinators and enemies of herbivores. Animal CCDs (mostly insect pheromones) were usually more integrated than those of plants (i.e. stronger covariation), suggesting that animals communicate via fixed proportions among compounds. Both plant and animal CCDs were composed of modules, which are groups of strongly covarying compounds. Biosynthetic similarity of compounds revealed biosynthetic constraints in the covariation patterns of plant CCDs. We provide a novel perspective on chemical communication and a basis for future investigations on structural properties of CCDs. This will facilitate identifying modules and biosynthetic constraints that may affect the outcome of selection and thus provide a predictive framework for evolutionary trajectories of CCDs in plants and animals.


Assuntos
Evolução Biológica , Vias Biossintéticas , Animais , Fenótipo , Compostos Orgânicos Voláteis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...