Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Microbiol ; 10: 442, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930866

RESUMO

More than 1.5 million fungal species are estimated to live in vastly different environmental niches. Despite each unique host environment, fungal cells sense certain fundamentally conserved elements, such as nutrients, pheromones and stress, for adaptation to their niches. Sensing these extracellular signals is critical for pathogens to adapt to the hostile host environment and cause disease. Hence, dissecting the complex extracellular signal-sensing mechanisms that aid in this is pivotal and may facilitate the development of new therapeutic approaches to control fungal infections. In this review, we summarize the current knowledge on how two important pathogenic yeasts, Candida albicans and Cryptococcus neoformans, sense nutrient availability, such as carbon sources, amino acids, and ammonium, and different stress signals to regulate their morphogenesis and pathogenicity in comparison with the non-pathogenic model yeast Saccharomyces cerevisiae. The molecular interactions between extracellular signals and their respective sensory systems are described in detail. The potential implication of analyzing nutrient and stress-sensing systems in antifungal drug development is also discussed.

3.
Nat Commun ; 7: 11337, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27088325

RESUMO

Mep2 proteins are fungal transceptors that play an important role as ammonium sensors in fungal development. Mep2 activity is tightly regulated by phosphorylation, but how this is achieved at the molecular level is not clear. Here we report X-ray crystal structures of the Mep2 orthologues from Saccharomyces cerevisiae and Candida albicans and show that under nitrogen-sufficient conditions the transporters are not phosphorylated and present in closed, inactive conformations. Relative to the open bacterial ammonium transporters, non-phosphorylated Mep2 exhibits shifts in cytoplasmic loops and the C-terminal region (CTR) to occlude the cytoplasmic exit of the channel and to interact with His2 of the twin-His motif. The phosphorylation site in the CTR is solvent accessible and located in a negatively charged pocket ∼30 Šaway from the channel exit. The crystal structure of phosphorylation-mimicking Mep2 variants from C. albicans show large conformational changes in a conserved and functionally important region of the CTR. The results allow us to propose a model for regulation of eukaryotic ammonium transport by phosphorylation.


Assuntos
Compostos de Amônio/química , Candida albicans/genética , Proteínas de Transporte de Cátions/química , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Compostos de Amônio/metabolismo , Candida albicans/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Cristalografia por Raios X , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Nitrogênio/metabolismo , Fosforilação , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Especificidade por Substrato , Termodinâmica
4.
Mol Microbiol ; 93(2): 317-30, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24895027

RESUMO

The extreme resistance of Saccharomyces cerevisiae to copper is overcome by 2-(6-benzyl-2-pyridyl)quinazoline (BPQ), providing a chemical-biology tool which has been exploited in two lines of discovery. First, BPQ is shown to form a red (BPQ)2 Cu(I) complex and promote Ctr1-independent copper-accumulation in whole cells and in mitochondria isolated from treated cells. Multiple phenotypes, including loss of aconitase activity, are consistent with copper-BPQ mediated damage to mitochondrial iron-sulphur clusters. Thus, a biochemical basis of copper-toxicity in S. cerevisiae is analogous to other organisms. Second, iron regulons controlled by Aft1/2, Cth2 and Yap5 that respond to mitochondrial iron-sulphur cluster status are modulated by copper-BPQ causing iron hyper-accumulation via upregulated iron-import. Comparison of copper-BPQ treated, untreated and copper-only treated wild-type and fra2Δ by RNA-seq has uncovered a new candidate Aft1 target-gene (LSO1) and paralogous non-target (LSO2), plus nine putative Cth2 target-transcripts. Two lines of evidence confirm that Fra2 dominates basal repression of the Aft1/2 regulons in iron-replete cultures. Fra2-independent control of these regulons is also observed but CTH2 itself appears to be atypically Fra2-dependent. However, control of Cth2-target transcripts which is independent of CTH2 transcript abundance or of Fra2, is also quantified. Use of copper-BPQ supports a substantial contribution of metabolite repression to iron-regulation.


Assuntos
Cobre/metabolismo , Ferro/metabolismo , Quinazolinas/farmacologia , Regulon , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Cobre/toxicidade , Cristalografia , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Homeostase , Mitocôndrias/química , Mitocôndrias/metabolismo , Família Multigênica , Quinazolinas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Enxofre/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
6.
Mol Cell Biol ; 33(20): 4041-50, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23959798

RESUMO

Copper is an essential but potentially toxic redox-active metal, so the levels and distribution of this metal are carefully regulated to ensure that it binds to the correct proteins. Previous studies of copper-dependent transcription in the yeast Saccharomyces cerevisiae have focused on the response of genes to changes in the exogenous levels of copper. We now report that yeast copper genes are regulated in response to the DNA-damaging agents methyl methanesulfonate (MMS) and hydroxyurea by a mechanism(s) that requires the copper-responsive transcription factors Mac1 and AceI, copper superoxide dismutase (Sod1) activity, and the Rad53 checkpoint kinase. Furthermore, in copper-starved yeast, the response of the Rad53 pathway to MMS is compromised due to a loss of Sod1 activity, consistent with the model that yeast imports copper to ensure Sod1 activity and Rad53 signaling. Crucially, the Mac1 transcription factor undergoes changes in its redox state in response to changing levels of copper or MMS. This study has therefore identified a novel regulatory relationship between cellular redox, copper homeostasis, and the DNA damage response in yeast.


Assuntos
Cobre/metabolismo , Dano ao DNA , DNA Fúngico/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Cobre/farmacologia , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Hidroxiureia/farmacologia , Metanossulfonato de Metila/farmacologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxirredução , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
mBio ; 4(3): e00220-13, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23653445

RESUMO

UNLABELLED: Urease in Cryptococcus neoformans plays an important role in fungal dissemination to the brain and causing meningoencephalitis. Although urea is not required for synthesis of apourease encoded by URE1, the available nitrogen source affected the expression of URE1 as well as the level of the enzyme activity. Activation of the apoenzyme requires three accessory proteins, Ure4, Ure6, and Ure7, which are homologs of the bacterial urease accessory proteins UreD, UreF, and UreG, respectively. A yeast two-hybrid assay showed positive interaction of Ure1 with the three accessory proteins encoded by URE4, URE6, and URE7. Metalloproteomic analysis of cryptococcal lysates using inductively coupled plasma mass spectrometry (ICP-MS) and a biochemical assay of urease activity showed that, as in many other organisms, urease is a metallocentric enzyme that requires nickel transported by Nic1 for its catalytic activity. The Ure7 accessory protein (bacterial UreG homolog) binds nickel likely via its conserved histidine-rich domain and appears to be responsible for the incorporation of Ni(2+) into the apourease. Although the cryptococcal genome lacks the bacterial UreE homolog, Ure7 appears to combine the functions of bacterial UreE and UreG, thus making this pathogen more similar to that seen with the plant system. Brain invasion by the ure1, ure7, and nic1 mutant strains that lack urease activity was significantly less effective in a mouse model. This indicated that an activated urease and not the Ure1 protein was responsible for enhancement of brain invasion and that the factors required for urease activation in C. neoformans resemble those of plants more than those of bacteria. IMPORTANCE: Cryptococcus neoformans is the major fungal agent of meningoencephalitis in humans. Although urease is an important factor for cryptococcal brain invasion, the enzyme activation system has not been studied. We show that urease is a nickel-requiring enzyme whose activity level is influenced by the type of available nitrogen source. C. neoformans contains all the bacterial urease accessory protein homologs and nickel transporters except UreE, a nickel chaperone. Cryptococcal Ure7 (a homolog of UreG) apparently functions as both the bacterial UreG and UreE in activating the Ure1 apoenzyme. The cryptococcal urease accessory proteins Ure4, Ure6, and Ure7 interacted with Ure1 in a yeast two-hybrid assay, and deletion of any one of these not only inactivated the enzyme but also reduced the efficacy of brain invasion. This is the first study showing a holistic picture of urease in fungi, clarifying that urease activity, and not Ure1 protein, contributes to pathogenesis in C. neoformans.


Assuntos
Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/patogenicidade , Proteínas Fúngicas/metabolismo , Urease/metabolismo , Fatores de Virulência/metabolismo , Animais , Encéfalo/microbiologia , Encéfalo/patologia , Criptococose/microbiologia , Criptococose/patologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Níquel/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
8.
Proc Natl Acad Sci U S A ; 108(7): 2729-34, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21282621

RESUMO

Hydrogen peroxide is thought to regulate cellular processes by direct oxidation of numerous cellular proteins, whereas antioxidants, most notably thiol peroxidases, are thought to reduce peroxides and inhibit H(2)O(2) response. However, thiol peroxidases have also been implicated in activation of transcription factors and signaling. It remains unclear if these enzymes stimulate or inhibit redox regulation and whether this regulation is widespread or limited to a few cellular components. Herein, we found that Saccharomyces cerevisiae cells lacking all eight thiol peroxidases were viable and withstood redox stresses. They transcriptionally responded to various redox treatments, but were unable to activate and repress gene expression in response to H(2)O(2). Further studies involving redox transcription factors suggested that thiol peroxidases are major regulators of global gene expression in response to H(2)O(2). The data suggest that thiol peroxidases sense and transfer oxidative signals to the signaling proteins and regulate transcription, whereas a direct interaction between H(2)O(2) and other cellular proteins plays a secondary role.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Peroxidases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Transdução de Sinais/efeitos dos fármacos , Sequência de Bases , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/genética , Peroxidases/deficiência , Fenótipo , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Transdução de Sinais/fisiologia
9.
PLoS One ; 5(12): e15968, 2010 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-21209844

RESUMO

The human fungal pathogens Cryptococcus neoformans and C. gattii cause life-threatening infections of the central nervous system. One of the major characteristics of cryptococcal disease is the ability of the pathogen to parasitise upon phagocytic immune effector cells, a phenomenon that correlates strongly with virulence in rodent models of infection. Despite the importance of phagocyte/Cryptococcus interactions to disease progression, current methods for assaying virulence in the macrophage system are both time consuming and low throughput. Here, we introduce the first stable and fully characterised GFP-expressing derivatives of two widely used cryptococcal strains: C. neoformans serotype A type strain H99 and C. gattii serotype B type strain R265. Both strains show unaltered responses to environmental and host stress conditions and no deficiency in virulence in the macrophage model system. In addition, we report the development of a method to effectively and rapidly investigate macrophage parasitism by flow cytometry, a technique that preserves the accuracy of current approaches but offers a four-fold improvement in speed.


Assuntos
Cryptococcus/metabolismo , Proteínas de Fluorescência Verde/química , Macrófagos/parasitologia , Animais , Automação , Sequência de Bases , Linhagem Celular , Citometria de Fluxo/métodos , Humanos , Camundongos , Microscopia Confocal/métodos , Dados de Sequência Molecular , Fagócitos/parasitologia , Especificidade da Espécie , Virulência
10.
Nature ; 460(7257): 823-30, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-19675642

RESUMO

Almost half of all enzymes must associate with a particular metal to function. An ambition is to understand why each metal-protein partnership arose and how it is maintained. Metal availability provides part of the explanation, and has changed over geological time and varies between habitats but is held within vital limits in cells. Such homeostasis needs metal sensors, and there is an ongoing search to discover the metal-sensing mechanisms. For metalloproteins to acquire the right metals, metal sensors must correctly distinguish between the inorganic elements.


Assuntos
Metaloproteínas/metabolismo , Metais/metabolismo , Regulação Alostérica , Animais , Bactérias/metabolismo , Biocatálise , Expressão Gênica , Estabilidade de RNA , Leveduras/metabolismo
11.
Mol Biol Cell ; 19(7): 3028-39, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18434596

RESUMO

The ammonium permease Mep2 is required for the induction of pseudohyphal growth, a process in Saccharomyces cerevisiae that occurs in response to nutrient limitation. Mep2 has both a transport and a regulatory function, supporting models in which Mep2 acts as a sensor of ammonium availability. Potentially similar ammonium permease-dependent regulatory cascades operate in other fungi, and they may also function in animals via the homologous Rh proteins; however, little is known about the molecular mechanisms that mediate ammonium sensing. We show that Mep2 is localized to the cell surface during pseudohyphal growth, and it is required for both filamentous and invasive growth. Analysis of site-directed Mep2 mutants in residues lining the ammonia-conducting channel reveal separation of function alleles (transport and signaling defective; transport-proficient/signaling defective), indicating transport is necessary but not sufficient to sense ammonia. Furthermore, Mep2 overexpression enhances differentiation under normally repressive conditions and induces a transcriptional profile that is consistent with activation of the mitogen-activated protein (MAP) kinase pathway. This finding is supported by epistasis analysis establishing that the known role of the MAP kinase pathway in pseudohyphal growth is linked to Mep2 function. Together, these data strengthen the model that Mep2-like proteins are nutrient sensing transceptors that govern cellular differentiation.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Diferenciação Celular , Membrana Celular/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Haploidia , Sistema de Sinalização das MAP Quinases , Microscopia de Fluorescência/métodos , Mutação , Nitrogênio/química , Análise de Sequência com Séries de Oligonucleotídeos , Compostos de Amônio Quaternário/química
12.
Eukaryot Cell ; 7(2): 187-201, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18083831

RESUMO

In Fusarium fujikuroi, the production of gibberellins and bikaverin is repressed by nitrogen sources such as glutamine or ammonium. Sensing and uptake of ammonium by specific permeases play key roles in nitrogen metabolism. Here, we describe the cloning of three ammonium permease genes, mepA, mepB, and mepC, and their participation in ammonium uptake and signal transduction in F. fujikuroi. The expression of all three genes is strictly regulated by the nitrogen regulator AreA. Severe growth defects of DeltamepB mutants on low-ammonium medium and methylamine uptake studies suggest that MepB functions as the main ammonium permease in F. fujikuroi. In DeltamepB mutants, nitrogen-regulated genes such as the gibberellin and bikaverin biosynthetic genes are derepressed in spite of high extracellular ammonium concentrations. mepA mepB and mepC mepB double mutants show a similar phenotype as DeltamepB mutants. All three F. fujikuroi mep genes fully complemented the Saccharomyces cerevisiae mep1 mep2 mep3 triple mutant to restore growth on low-ammonium medium, whereas only MepA and MepC restored pseudohyphal growth in the mep2/mep2 mutant. Overexpression of mepC in the DeltamepB mutants partially suppressed the growth defect but did not prevent derepression of AreA-regulated genes. These studies provide evidence that MepB functions as a regulatory element in a nitrogen sensing system in F. fujikuroi yet does not provide the sensor activity of Mep2 in yeast, indicating differences in the mechanisms by which nitrogen is sensed in S. cerevisiae and F. fujikuroi.


Assuntos
Proteínas Fúngicas/fisiologia , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Nitrogênio/farmacologia , Compostos de Amônio Quaternário/metabolismo , Northern Blotting , Southern Blotting , Clonagem Molecular , Proteínas Fúngicas/genética , Fusarium/crescimento & desenvolvimento , Fusarium/patogenicidade , Deleção de Genes , Teste de Complementação Genética , Proteínas de Membrana Transportadoras/genética , Filogenia , Reação em Cadeia da Polimerase , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Transformação Genética
13.
Eukaryot Cell ; 7(2): 237-46, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18055915

RESUMO

The conserved AmtB/Mep/Rh family of proteins mediate the transport of ammonium across cellular membranes in a wide range of organisms. Certain fungal members of this group are required to initiate filamentous growth. We have investigated the functions of two members of the AmtB/Mep/Rh family from the pathogenic basidiomycete Cryptococcus neoformans. Amt1 and Amt2 are low- and high-affinity ammonium permeases, respectively, and a mutant lacking both permeases is unable to grow under ammonium-limiting conditions. AMT2 is transcriptionally induced in response to nitrogen limitation, whereas AMT1 is constitutively expressed. Single and double amt mutants exhibit wild-type virulence in two models of cryptococcosis. Consistent with this, the formation of two C. neoformans virulence factors, cell wall melanin and the extracellular polysaccharide capsule, is not impaired in cells lacking either or both of the Amt1 and Amt2 permeases. Amt2 is, however, required for the initiation of invasive growth of haploid cells under low-nitrogen conditions and for the mating of wild-type cells under the same conditions. We propose that Amt2 may be a new fungal ammonium sensor and an element of the signaling cascades that govern the mating of C. neoformans in response to environmental nutritional cues.


Assuntos
Criptococose/patologia , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/metabolismo , Genes Fúngicos Tipo Acasalamento , Proteínas de Membrana Transportadoras/metabolismo , Compostos de Amônio Quaternário/metabolismo , Sequência de Aminoácidos , Criptococose/tratamento farmacológico , Criptococose/enzimologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Metilaminas/farmacologia , Dados de Sequência Molecular , Fenótipo , Filogenia , Homologia de Sequência de Aminoácidos , Virulência
14.
Nat Rev Microbiol ; 5(1): 57-69, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17170747

RESUMO

All living organisms use numerous signal-transduction systems to sense and respond to their environments and thereby survive and proliferate in a range of biological niches. Molecular dissection of these signalling networks has increased our understanding of these communication processes and provides a platform for therapeutic intervention when these pathways malfunction in disease states, including infection. Owing to the expanding availability of sequenced genomes, a wealth of genetic and molecular tools and the conservation of signalling networks, members of the fungal kingdom serve as excellent model systems for more complex, multicellular organisms. Here, we review recent progress in our understanding of how fungal-signalling circuits operate at the molecular level to sense and respond to a plethora of environmental cues.


Assuntos
Adaptação Fisiológica , Fungos/fisiologia , Transdução de Sinais , Amônia/análise , Amônia/metabolismo , Animais , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Glucose/análise , Glucose/metabolismo , Humanos , Luz , Micoses/microbiologia , Feromônios/análise , Feromônios/metabolismo , Plantas/microbiologia
15.
J Biol Chem ; 281(26): 17661-9, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16648636

RESUMO

The transcription factors Aft1 and Aft2 from Saccharomyces cerevisiae regulate the expression of genes involved in iron homeostasis. These factors induce the expression of iron regulon genes in iron-deficient yeast but are inactivated in iron-replete cells. Iron inhibition of Aft1/Aft2 was previously shown to be dependent on mitochondrial components required for cytosolic iron sulfur protein biogenesis. We presently show that the nuclear monothiol glutaredoxins Grx3 and Grx4 are critical for iron inhibition of Aft1 in yeast cells. Cells lacking both glutaredoxins show constitutive expression of iron regulon genes. Overexpression of Grx4 attenuates wild type Aft1 activity. The thioredoxin-like domain in Grx3 and Grx4 is dispensable in mediating iron inhibition of Aft1 activity, whereas the conserved cysteine that is part of the conserved CGFS motif in monothiol glutaredoxins is essential for this function. Grx3 and Grx4 interact with Aft1 as shown by two-hybrid interactions and co-immunoprecipitation assays. The interaction between glutaredoxins and Aft1 is not modulated by the iron status of cells but is dependent on the conserved glutaredoxin domain Cys residue. Thus, Grx3 and Grx4 are novel components required for Aft1 iron regulation that most likely occurs in the nucleus.


Assuntos
Ferro/metabolismo , Oxirredutases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Regulação Fúngica da Expressão Gênica , Glutarredoxinas , Glutationa/metabolismo , Oxirredutases/genética , Regulon/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Ativação Transcricional/fisiologia
16.
J Biol Chem ; 280(11): 10135-40, 2005 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-15649888

RESUMO

Two transcriptional activators, Aft1 and Aft2, regulate iron homeostasis in Saccharomyces cerevisiae. These factors induce the expression of iron regulon genes in iron-deficient yeast but are inactivated in iron-replete cells. Iron inhibition of Aft1/Aft2 is abrogated in cells defective for Fe-S cluster biogenesis within the mitochondrial matrix (Chen, O. S., Crisp, R. J., Valachovic, M., Bard, M., Winge, D. R., and Kaplan, J. (2004) J. Biol. Chem. 279, 29513-29518). To determine whether iron sensing by Aft1/Aft2 requires the function of the mitochondrial Fe-S export and cytosolic Fe-S protein assembly systems, we evaluated the expression of the iron regulon in cells depleted of glutathione and in cells depleted of Atm1, Nar1, Cfd1, and Nbp35. The iron regulon is induced in cells depleted of Atm1 with Aft1 largely responsible for the induced gene expression. Aft2 is activated at a later time in Atm1-depleted cells. Likewise, the iron regulon is induced in cells depleted of glutathione. In contrast, repression of NAR1, CFD1, or NBP35 fails to induce the iron regulon despite strong inhibition of cytosolic/nuclear Fe-S protein assembly. Thus, iron sensing by Aft1/Aft2 is not linked to the maturation of cytosolic/nuclear Fe-S proteins, but the mitochondrial inner membrane transporter Atm1 is important to transport the inhibitory signal. Although Aft1 and Aft2 sense a signal emanating from the Fe-S cluster biogenesis pathway, there is no indication that the proteins are inhibited by direct binding of an Fe-S cluster.


Assuntos
Citosol/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/metabolismo , Citoplasma/metabolismo , Diploide , Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Glutationa/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Homozigoto , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Plasmídeos/metabolismo , Regulon , Transdução de Sinais
17.
Proc Natl Acad Sci U S A ; 101(21): 7999-8004, 2004 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-15141092

RESUMO

Aging is thought to be caused by the accumulation of damage, primarily from oxidative modifications of cellular components by reactive oxygen species (ROS). Here we used yeast methionine sulfoxide reductases MsrA and MsrB to address this hypothesis. In the presence of oxygen, these antioxidants could increase yeast lifespan and did so independent of the lifespan extension offered by caloric restriction. However, under ROS-deficient, strictly anaerobic conditions, yeast lifespan was shorter, not affected by MsrA or MsrB, and further reduced by caloric restriction. In addition, we identified changes in the global gene expression associated with aging in yeast, and they did not include oxidative stress genes. Our findings suggest how the interplay between ROS, antioxidants, and efficiency of energy production regulates the lifespan. The data also suggest a model wherein factors implicated in aging (for example, ROS) may influence the lifespan yet not be the cause of aging.


Assuntos
Senescência Celular/fisiologia , Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Anaerobiose , Antioxidantes/metabolismo , Restrição Calórica , Senescência Celular/genética , Metionina Sulfóxido Redutases , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , Estresse Oxidativo , Oxirredutases/genética , Oxigênio/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
J Biol Chem ; 278(30): 27636-43, 2003 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-12756250

RESUMO

The transcription factors Aft1p and Aft2p from Saccharomyces cerevisiae regulate the expression of genes that are involved in iron homeostasis. In vitro studies have shown that both transcription factors bind to an iron-responsive element (FeRE) that is present in the upstream region of genes in the iron regulon. We have used DNA microarrays to distinguish the genes that are activated by Aft1p and Aft2p and to establish for the first time that each factor gives rise to a unique transcriptional profile due to the differential expression of individual iron-regulated genes. We also show that both Aft1p and Aft2p mediate the in vivo expression of FET3 and FIT3 through a consensus FeRE. In addition, both proteins regulate MRS4 via a variant FeRE with Aft2p being the stronger activator from this particular element. Like other paralogous pairs of transcription factors within S. cerevisiae, Aft1p and Aft2p are able to interact with the same promoter elements while maintaining specificity of gene activation.


Assuntos
Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/fisiologia , Transativadores/fisiologia , Fatores de Transcrição/fisiologia , Alelos , Sequência de Bases , Vetores Genéticos , Ferro/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Análise de Sequência com Séries de Oligonucleotídeos , Plasmídeos/metabolismo , Ligação Proteica , RNA Mensageiro/metabolismo , Elementos de Resposta , Saccharomyces cerevisiae/metabolismo , Endonucleases Específicas para DNA e RNA de Cadeia Simples/metabolismo , Transcrição Gênica , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...