Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Dyn ; 248(10): 997-1008, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31390119

RESUMO

BACKGROUND: During zebrafish epiboly, the embryonic cell mass, or blastoderm, spreads to enclose the yolk cell. The blastoderm consists of an outer epithelial sheet, the enveloping layer (EVL), and the underlying deep cell layer (DEL). Studies have provided insights into the mechanisms of EVL and deep cell epiboly, but little is known about the interactions between the two cell layers and what role they may play during epiboly. RESULTS: We used live imaging to examine EVL basal protrusions. We identified them as filopodia based on f-actin content and localization of fluorescently tagged filopodial markers. A spatiotemporal analysis revealed that the largest number of EVL filopodia were present during early epiboly at the animal pole. In functional studies, expression of a constitutively active actin-bundling protein resulted in increased filopodial length and delayed gastrulation. CONCLUSIONS: We identified protrusions on the basal surface of EVL cells as filopodia and showed that they are present throughout the EVL during epiboly. The largest number of filopodia was at the animal pole during early epiboly, which is when and where deep cell radial intercalations occur to the greatest extent. These findings suggest that EVL filopodia may function during epiboly to promote deep cell rearrangements during epiboly initiation.


Assuntos
Epitélio/ultraestrutura , Pseudópodes/ultraestrutura , Análise Espaço-Temporal , Actinas/metabolismo , Animais , Blastoderma/citologia , Embrião não Mamífero , Gastrulação , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...