Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Densitom ; 21(3): 399-405, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28693882

RESUMO

The skeleton of a cricket fast bowler is exposed to a unique combination of gravitational and torsional loading in the form of substantial ground reaction forces delivered through the front landing foot, and anterior-posterior shear forces mediated by regional muscle contractions across the lumbo-pelvic region. The objectives of this study were to compare the hip structural characteristics of elite fast bowlers with recreationally active age-matched controls, and to examine unilateral bone properties in fast bowlers. Dual-energy X-ray absorptiometry of the proximal femur was performed in 26 elite male fast bowlers and 26 normally active controls. Hip structural analysis (GE Lunar; enCORE version 15.0) determined areal bone mineral density (BMD) of the proximal femur, and cross-sectional area, section modulus (Z), cross-sectional moment of inertia, and femoral strength index at the narrow region of the femoral neck. Mean femoral neck and trochanter BMD were greater in fast bowlers than in controls (p <0.001). All bone geometry properties, except for cross-sectional moment of inertia, were superior in fast bowlers (p <0.05) following adjustment for height and lean mass. There were no asymmetries in BMD or bone geometry when considering leg dominance of the fast bowlers (p > 0.05). Elite fast bowlers have superior bone characteristics of the proximal femur, with results inferring enhanced resistance to axial compression (cross-sectional area), and bending (Z) forces, and enhanced strength to withstand a fall impact as indicated by their higher femoral strength index. No asymmetries in hip bone properties were identified, suggesting that both torsional and gravitational loading offer significant osteogenic potential.


Assuntos
Densidade Óssea , Colo do Fêmur/anatomia & histologia , Colo do Fêmur/diagnóstico por imagem , Esportes/fisiologia , Adolescente , Adulto , Gravitação , Humanos , Masculino , Osteogênese , Torção Mecânica , Adulto Jovem
2.
PLoS One ; 12(5): e0177175, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28493988

RESUMO

BACKGROUND: The conventional measurement of obesity utilises the body mass index (BMI) criterion. Although there are benefits to this method, there is concern that not all individuals at risk of obesity-associated medical conditions are being identified. Whole-body fat percentage (%FM), and specifically visceral adipose tissue (VAT) mass, are correlated with and potentially implicated in disease trajectories, but are not fully accounted for through BMI evaluation. The aims of this study were (a) to compare five anthropometric predictors of %FM and VAT mass, and (b) to explore new cut-points for the best of these predictors to improve the characterisation of obesity. METHODS: BMI, waist circumference (WC), waist-to-hip ratio (WHR), waist-to-height ratio (WHtR) and waist/height0.5 (WHT.5R) were measured and calculated for 81 adults (40 women, 41 men; mean (SD) age: 38.4 (17.5) years; 94% Caucasian). Total body dual energy X-ray absorptiometry with Corescan (GE Lunar iDXA, Encore version 15.0) was also performed to quantify %FM and VAT mass. Linear regression analysis, stratified by sex, was applied to predict both %FM and VAT mass for each anthropometric variable. Within each sex, we used information theoretic methods (Akaike Information Criterion; AIC) to compare models. For the best anthropometric predictor, we derived tentative cut-points for classifying individuals as obese (>25% FM for men or >35% FM for women, or > highest tertile for VAT mass). RESULTS: The best predictor of both %FM and VAT mass in men and women was WHtR. Derived cut-points for predicting whole body obesity were 0.53 in men and 0.54 in women. The cut-point for predicting visceral obesity was 0.59 in both sexes. CONCLUSIONS: In the absence of more objective measures of central obesity and adiposity, WHtR is a suitable proxy measure in both women and men. The proposed DXA-%FM and VAT mass cut-offs require validation in larger studies, but offer potential for improvement of obesity characterisation and the identification of individuals who would most benefit from therapeutic intervention.


Assuntos
Tecido Adiposo/metabolismo , Gordura Intra-Abdominal/metabolismo , Absorciometria de Fóton , Adiposidade/fisiologia , Adulto , Idoso , Índice de Massa Corporal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Circunferência da Cintura/fisiologia , Relação Cintura-Quadril
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...