Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 275(27): 20424-30, 2000 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-10779510

RESUMO

The GroE chaperones of Escherichia coli promote the folding of other proteins under conditions where no spontaneous folding occurs. One requirement for this reaction is the trapping of the nonnative protein inside the chaperone complex. Encapsulation may be important to prevent unfavorable intermolecular interactions during folding. We show here that, especially for oligomeric proteins, the timing of encapsulation and release is of critical importance. If this cycle is decelerated, misfolding is observed inside functional chaperone complexes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Choque Térmico/química , Dobramento de Proteína , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/ultraestrutura , Chaperonina 10/química , Chaperonina 60/química , Chaperoninas , Citrato (si)-Sintase/química , Dimerização , Escherichia coli , Proteínas de Escherichia coli , Proteínas de Choque Térmico/ultraestrutura , Cinética , Microscopia Eletrônica , Chaperonas Moleculares/química , Temperatura , Fatores de Tempo
2.
J Mol Biol ; 289(4): 1075-92, 1999 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-10369783

RESUMO

The Escherichia coli GroE chaperones assist protein folding under conditions where no spontaneous folding occurs. To achieve this, the cooperation of GroEL and GroES, the two protein components of the chaperone system, is an essential requirement. While in many cases GroE simply suppresses unspecific aggregation of non-native proteins by encapsulation, there are examples where folding is accelerated by GroE. Using maltose-binding protein (MBP) as a substrate for GroE, it had been possible to define basic requirements for catalysis of folding. Here, we have analyzed key steps in the interaction of GroE and the MBP mutant Y283D during catalyzed folding. In addition to high temperature, high ionic strength was shown to be a restrictive condition for MBP Y283D folding. In both cases, the complete GroE system (GroEL, GroES and ATP) compensates the deceleration of MBP Y283D folding. Combining kinetic folding experiments and electron microscopy of GroE particles, we demonstrate that at elevated temperatures, symmetrical GroE particles with GroES bound to both ends of the GroEL cylinder play an important role in the efficient catalysis of MBP Y283D refolding. In principle, MBP Y283D folding can be catalyzed during one encapsulation cycle. However, because the commitment to reach the native state is low after only one cycle of ATP hydrolysis, several interaction cycles are required for catalyzed folding.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Transporte de Monossacarídeos , Dobramento de Proteína , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Apirase , Ácido Aspártico , Proteínas de Transporte/química , Catálise , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Chaperoninas , Proteínas Ligantes de Maltose , Microscopia Eletrônica , Cloreto de Sódio , Soluções , Tirosina
3.
Biol Chem ; 380(1): 55-62, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10064137

RESUMO

The archaeon Methanopyrus kandleri is the most thermophilic methanogen presently known. It contains a chaperonin (thermosome) which represents a 951 kDa homo-hexadecameric protein complex with NH4+-dependent ATPase activity. Since its synthesis is not increased upon heat shock, we set out to test its chaperone function. In order to obtain the chaperonin in amounts sufficient for functional investigations, the gene encoding the 60 kDa subunit was expressed in E. coili BL21 (DE3) cells. Purification yielded soluble, high-molecular-mass double-ring complexes, indistinguishable from the natural thermosome. In order to study the functional properties of the recombinant protein complex, pig citrate synthase, yeast alcohol dehydrogenase, yeast alpha-glucosidase, bovine insulin, and Thermotoga phosphoglycerate kinase were used as model substrates. The results demonstrate that the recombinant M. kandleri thermosome possesses a chaperone-like activity in vitro, inhibiting aggregation as the major off-pathway-reaction during thermal unfolding and refolding of proteins after chemical denaturation. However, the chaperonin only forms dead-end complexes with its non-native substrates, no release is detectable at temperatures between 25 and 60 degrees C.


Assuntos
Proteínas Arqueais/genética , Chaperoninas/química , Chaperoninas/genética , Euryarchaeota/genética , Proteínas Recombinantes/química , Álcool Desidrogenase/antagonistas & inibidores , Animais , Proteínas Arqueais/química , Proteínas Arqueais/isolamento & purificação , Proteínas Arqueais/farmacologia , Bovinos , Chaperoninas/isolamento & purificação , Chaperoninas/farmacologia , Fenômenos Químicos , Físico-Química , Citrato (si)-Sintase/antagonistas & inibidores , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Euryarchaeota/química , Inibidores de Glicosídeo Hidrolases , Insulina/metabolismo , Antagonistas da Insulina/farmacologia , Fosfoglicerato Quinase/antagonistas & inibidores , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Suínos , Termossomos
4.
J Biol Chem ; 273(50): 33305-10, 1998 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-9837903

RESUMO

The prokaryotic molecular chaperone GroE is increasingly expressed under heat shock conditions. GroE protects cells by preventing the irreversible aggregation of thermally unfolding proteins. Here, the interaction of GroE with thermally unfolding citrate synthase (CS) was dissected into several steps that occur before irreversible aggregation, and the conformational states of the unfolding protein recognized by GroEL were determined. The kinetic analysis of CS unfolding revealed the formation of inactive dimeric and monomeric intermediates. GroEL binds both intermediates without affecting the unfolding pathway. Furthermore, the dimeric intermediates are not protected against dissociation in the presence of GroEL. Monomeric CS is stably associated with GroEL, thus preventing further irreversible unfolding steps and subsequent aggregation. During refolding, monomeric CS is encapsulated inside the cavity of GroEL. GroES complexes. Taken together our results suggest that for protection of cells against heat stress both the ability of GroEL to interact with a large variety of nonnative conformations of proteins and the active, GroES-dependent refolding of highly unfolded species are important.


Assuntos
Chaperonina 60/metabolismo , Citrato (si)-Sintase/metabolismo , Sítios de Ligação , Biopolímeros , Citrato (si)-Sintase/antagonistas & inibidores , Cinética , Microscopia Eletrônica , Ligação Proteica , Dobramento de Proteína
5.
Proc Natl Acad Sci U S A ; 94(4): 1096-100, 1997 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-9037012

RESUMO

The GroE chaperones of Escherichia coli assist protein folding under physiological and heat shock conditions in an ATP-dependent way. Although a number of details of assisted folding have been elucidated, the molecular mechanism of the GroE cycle remains unresolved. Here we present an experimental system that allows the direct analysis of the GroE-mediated folding cycle under stringent conditions. We demonstrate that the GroE proteins efficiently catalyze the folding of kinetically trapped folding intermediates of a mutant of maltose-binding protein (MBP Y283D) in an ATP-dependent way. GroES plays a key role in this reaction cycle, accelerating the folding of the substrate protein MBP Y283D up to 50-fold. Interestingly, catalysis of the folding reaction requires the formation of symmetrical football-shaped GroEL x GroES2 particles and the intermediate release of the nonnative protein from the chaperone complex. Our results show that, in the presence of GroES, the complex architecture of the GroEL toroids allows maintenance of two highly interregulated rings simultaneously active in protein folding.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Transporte/metabolismo , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Proteínas de Escherichia coli , Proteínas de Membrana/metabolismo , Proteínas de Transporte de Monossacarídeos , Dobramento de Proteína , Proteínas de Transporte/ultraestrutura , Catálise , Chaperonina 10/ultraestrutura , Chaperonina 60/ultraestrutura , Proteínas Ligantes de Maltose , Proteínas de Membrana/ultraestrutura , Modelos Biológicos , Ligação Proteica
6.
Eur J Biochem ; 240(1): 274-9, 1996 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-8925837

RESUMO

Lactate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima has been functionally expressed in Escherichia coli. As shown by gel-permeation chromatography, dynamic light scattering, and ultracentrifugation, the recombinant protein forms homotetrameric and homooctameric assemblies with identical spectral properties and a common subunit molecular mass (35 kDa). Dynamic light scattering and sedimentation equilibrium experiments proved that both species are monodisperse, thus excluding their interconversion in the given ranges of concentration (0.02-50 mg/ml) and temperature (20-80 degrees C). Rechromatography confirms this finding: the octamer does not dissociate at low enzyme concentrations, nor do tetramers dimerize at the given upper limit of concentration. Renaturation of pure tetramers or octamers after preceding guanidine denaturation leads to redistribution of the two species; increased temperature favors octamer formation. Thermal analysis and denaturation by chaotropic agents do not allow the free energies of stabilization of the two forms to be quantified, because heat coagulation and kinetic partitioning between reconstitution and aggregation causes irreversible side reactions. Guanidine denaturation of the octamer leads to a highly cooperative dissociation to tetramers which subsequently dissociate and unfold to yield metastable dimers and, finally, fully unfolded monomers. Evidently, there is no tight coupling of the two tetramers within the stable octameric quaternary structure. Electron microscopy clearly corroborates this conclusion: image processing shows that the dumb-bell-shaped octamer is made up of two tetramers connected via surface contacts without significant changes in the dimensions of the constituent parts.


Assuntos
Bactérias Anaeróbias Gram-Negativas/enzimologia , L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/isolamento & purificação , Sítios de Ligação , Cromatografia em Gel , Dicroísmo Circular , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli , Guanidina , Guanidinas , L-Lactato Desidrogenase/ultraestrutura , Luz , Substâncias Macromoleculares , Microscopia Eletrônica , Peso Molecular , Conformação Proteica , Desnaturação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/ultraestrutura , Espalhamento de Radiação , Espectrofotometria
7.
Protein Sci ; 4(2): 228-36, 1995 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-7757011

RESUMO

Enolase (2-phospho-D-glycerate hydrolase; EC 4.2.1.11) from the hyperthermophilic bacterium Thermotoga maritima was purified to homogeneity. The N-terminal 25 amino acids of the enzyme reveal a high degree of similarity to enolases from other sources. As shown by sedimentation analysis and gel-permeation chromatography, the enzyme is a 345-kDa homoctamer with a subunit molecular mass of 48 +/- 5 kDa. Electron microscopy and image processing yield ring-shaped particles with a diameter of 17 nm and fourfold symmetry. Averaging of the aligned particles proves the enzyme to be a tetramer of dimers. The enzyme requires divalent cations in the activity assay, Mg2+ being most effective. The optimum temperature for catalysis is 90 degrees C, the temperature dependence yields a nonlinear Arrhenius profile with limiting activation energies of 75 kJ mol-1 and 43 kJ mol-1 at temperatures below and above 45 degrees C. The pH optimum of the enzyme lies between 7 and 8. The apparent Km values for 2-phospho-D-glycerate and Mg2+ at 75 degrees C are 0.07 mM and 0.03 mM; with increasing temperature, they are decreased by factors 2 and 30, respectively. Fluoride and phosphate cause competitive inhibition with a Ki of 0.14 mM. The enzyme shows high intrinsic thermal stability, with a thermal transition at 90 and 94 degrees C in the absence and in the presence of Mg2+.


Assuntos
Bactérias Anaeróbias Gram-Negativas/enzimologia , Fosfopiruvato Hidratase/química , Sequência de Aminoácidos , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Estabilidade Enzimática , Bactérias Anaeróbias Gram-Negativas/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Microscopia Eletrônica , Dados de Sequência Molecular , Peso Molecular , Fosfopiruvato Hidratase/isolamento & purificação , Fosfopiruvato Hidratase/metabolismo , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Temperatura
8.
Science ; 265(5172): 656-9, 1994 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-7913554

RESUMO

The particular structural arrangement of chaperonins probably contributes to their ability to assist in the folding of proteins. The interaction of the oligomeric bacterial chaperonin GroEL and its cochaperonin, GroES, in the presence of adenosine diphosphate (ADP) forms an asymmetric complex. However, in the presence of adenosine triphosphate (ATP) or its nonhydrolyzable analogs, symmetric complexes were found by electron microscopy and image analysis. The existence of symmetric chaperonin complexes is not predicted by current models of the functional cycle for GroE-mediated protein folding. Because complete folding of a nonnative substrate protein in the presence of GroEL and GroES only occurs in the presence of ATP, but not with ADP, the symmetric chaperonin complexes formed during the GroE cycle are proposed to be functionally significant.


Assuntos
Proteínas de Bactérias/química , Proteínas de Choque Térmico/química , Difosfato de Adenosina/farmacologia , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Biopolímeros , Chaperonina 10 , Chaperonina 60 , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/ultraestrutura , Hidrólise , Microscopia Eletrônica , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...