Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; 17(2): e20457, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38764287

RESUMO

Oats (Avena sativa L.) provide unique nutritional benefits and contribute to sustainable agricultural systems. Breeding high-value oat varieties that meet milling industry standards is crucial for satisfying the demand for oat-based food products. Test weight, thins, and groat percentage are primary traits that define oat milling quality and the final price of food-grade oats. Conventional selection for milling quality is costly and burdensome. Multi-trait genomic selection (MTGS) combines information from genome-wide markers and secondary traits genetically correlated with primary traits to predict breeding values of primary traits on candidate breeding lines. MTGS can improve prediction accuracy and significantly accelerate the rate of genetic gain. In this study, we evaluated different MTGS models that used morphometric grain traits to improve prediction accuracy for primary grain quality traits within the constraints of a breeding program. We evaluated 558 breeding lines from the University of Illinois Oat Breeding Program across 2 years for primary milling traits, test weight, thins, and groat percentage, and secondary grain morphometric traits derived from kernel and groat images. Kernel morphometric traits were genetically correlated with test weight and thins percentage but were uncorrelated with groat percentage. For test weight and thins percentage, the MTGS model that included the kernel morphometric traits in both training and candidate sets outperformed single-trait models by 52% and 59%, respectively. In contrast, MTGS models for groat percentage were not significantly better than the single-trait model. We found that incorporating kernel morphometric traits can improve the genomic selection for test weight and thins percentage.


Assuntos
Avena , Grão Comestível , Melhoramento Vegetal , Avena/genética , Grão Comestível/genética , Seleção Genética , Fenótipo , Genoma de Planta , Genômica/métodos , Locos de Características Quantitativas
2.
BMC Genomics ; 23(1): 736, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316650

RESUMO

BACKGROUND: Recurrent selection is a foundational breeding method for quantitative trait improvement. It typically features rapid breeding cycles that can lead to high rates of genetic gain. Usually, generations are discrete in recurrent selection, which means that breeding candidates are evaluated and considered for selection for only one cycle. Alternately, generations can overlap, with breeding candidates considered for selection as parents for multiple cycles. With recurrent genomic selection but not phenotypic selection, candidates can be re-evaluated by using genomic estimated breeding values without additional phenotyping of the candidates themselves. Therefore, it may be that candidates with true high breeding values discarded in one cycle due to underestimation of breeding value could be identified and selected in subsequent cycles. The consequences of allowing generations to overlap in recurrent selection are unknown. We assessed whether maintaining overlapping and discrete generations led to differences in genetic gain for phenotypic, genomic truncation, and genomic optimum contribution recurrent selection by stochastic simulation. RESULTS: With phenotypic selection, overlapping generations led to decreased genetic gain compared to discrete generations due to increased selection error bias. Selected individuals, which were in the upper tail of the distribution of phenotypic values, tended to also have high absolute error relative to their true breeding value compared to the overall population. Without repeated phenotyping, these individuals erroneously believed to have high value were repeatedly selected across cycles, leading to decreased genetic gain. With genomic truncation selection, overlapping and discrete generations performed similarly as updating breeding values precluded repeatedly selecting individuals with inaccurately high estimates of breeding values in subsequent cycles. Overlapping generations did not outperform discrete generations in the presence of a positive genetic trend with genomic truncation selection, as individuals from previous breeding cycles typically had truly lower breeding values than candidates from the current generation. With genomic optimum contribution selection, overlapping and discrete generations performed similarly, but overlapping generations slightly outperformed discrete generations in the long term if the targeted inbreeding rate was extremely low. CONCLUSION: Maintaining discrete generations in recurrent phenotypic selection leads to increased genetic gain, especially at low heritabilities, by preventing selection error bias. With genomic truncation selection and genomic optimum contribution selection, genetic gain does not differ between discrete and overlapping generations assuming non-genetic effects are not present. Overlapping generations may increase genetic gain in the long term with very low targeted rates of inbreeding in genomic optimum contribution selection.


Assuntos
Cruzamento , Seleção Genética , Humanos , Endogamia , Genoma , Genômica/métodos , Modelos Genéticos
3.
Rice (N Y) ; 14(1): 92, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34773509

RESUMO

Rice genetic improvement is a key component of achieving and maintaining food security in Asia and Africa in the face of growing populations and climate change. In this effort, the International Rice Research Institute (IRRI) continues to play a critical role in creating and disseminating rice varieties with higher productivity. Due to increasing demand for rice, especially in Africa, there is a strong need to accelerate the rate of genetic improvement for grain yield. In an effort to identify and characterize the elite breeding pool of IRRI's irrigated rice breeding program, we analyzed 102 historical yield trials conducted in the Philippines during the period 2012-2016 and representing 15,286 breeding lines (including released varieties). A mixed model approach based on the pedigree relationship matrix was used to estimate breeding values for grain yield, which ranged from 2.12 to 6.27 t·ha-1. The rate of genetic gain for grain yield was estimated at 8.75 kg·ha-1 year-1 (0.23%) for crosses made in the period from 1964 to 2014. Reducing the data to only IRRI released varieties, the rate doubled to 17.36 kg·ha-1 year-1 (0.46%). Regressed against breeding cycle the rate of gain for grain yield was 185 kg·ha-1 cycle-1 (4.95%). We selected 72 top performing lines based on breeding values for grain yield to create an elite core panel (ECP) representing the genetic diversity in the breeding program with the highest heritable yield values from which new products can be derived. The ECP closely aligns with the indica 1B sub-group of Oryza sativa that includes most modern varieties for irrigated systems. Agronomic performance of the ECP under multiple environments in Asia and Africa confirmed its high yield potential. We found that the rate of genetic gain for grain yield found in this study was limited primarily by long cycle times and the direct introduction of non-improved material into the elite pool. Consequently, the current breeding scheme for irrigated rice at IRRI is based on rapid recurrent selection among highly elite lines. In this context, the ECP constitutes an important resource for IRRI and NAREs breeders to carefully characterize and manage that elite diversity.

4.
Front Genet ; 12: 692870, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276796

RESUMO

Hybrid rice varieties can outyield the best inbred varieties by 15 - 30% with appropriate management. However, hybrid rice requires more inputs and management than inbred rice to realize a yield advantage in high-yielding environments. The development of stress-tolerant hybrid rice with lowered input requirements could increase hybrid rice yield relative to production costs. We used genomic prediction to evaluate the combining abilities of 564 stress-tolerant lines used to develop Green Super Rice with 13 male sterile lines of the International Rice Research Institute for yield-related traits. We also evaluated the performance of their F1 hybrids. We identified male sterile lines with good combining ability as well as F1 hybrids with potential further use in product development. For yield per plant, accuracies of genomic predictions of hybrid genetic values ranged from 0.490 to 0.822 in cross-validation if neither parent or up to both parents were included in the training set, and both general and specific combining abilities were modeled. The accuracy of phenotypic selection for hybrid yield per plant was 0.682. The accuracy of genomic predictions of male GCA for yield per plant was 0.241, while the accuracy of phenotypic selection was 0.562. At the observed accuracies, genomic prediction of hybrid genetic value could allow improved identification of high-performing single crosses. In a reciprocal recurrent genomic selection program with an accelerated breeding cycle, observed male GCA genomic prediction accuracies would lead to similar rates of genetic gain as phenotypic selection. It is likely that prediction accuracies of male GCA could be improved further by targeted expansion of the training set. Additionally, we tested the correlation of parental genetic distance with mid-parent heterosis in the phenotyped hybrids. We found the average mid-parent heterosis for yield per plant to be consistent with existing literature values at 32.0%. In the overall population of study, parental genetic distance was significantly negatively correlated with mid-parent heterosis for yield per plant (r = -0.131) and potential yield (r = -0.092), but within female families the correlations were non-significant and near zero. As such, positive parental genetic distance was not reliably associated with positive mid-parent heterosis.

5.
Front Genet ; 12: 643761, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33719351

RESUMO

Although hybrid crop varieties are among the most popular agricultural innovations, the rationale for hybrid crop breeding is sometimes misunderstood. Hybrid breeding is slower and more resource-intensive than inbred breeding, but it allows systematic improvement of a population by recurrent selection and exploitation of heterosis simultaneously. Inbred parental lines can identically reproduce both themselves and their F1 progeny indefinitely, whereas outbred lines cannot, so uniform outbred lines must be bred indirectly through their inbred parents to harness heterosis. Heterosis is an expected consequence of whole-genome non-additive effects at the population level over evolutionary time. Understanding heterosis from the perspective of molecular genetic mechanisms alone may be elusive, because heterosis is likely an emergent property of populations. Hybrid breeding is a process of recurrent population improvement to maximize hybrid performance. Hybrid breeding is not maximization of heterosis per se, nor testing random combinations of individuals to find an exceptional hybrid, nor using heterosis in place of population improvement. Though there are methods to harness heterosis other than hybrid breeding, such as use of open-pollinated varieties or clonal propagation, they are not currently suitable for all crops or production environments. The use of genomic selection can decrease cycle time and costs in hybrid breeding, particularly by rapidly establishing heterotic pools, reducing testcrossing, and limiting the loss of genetic variance. Open questions in optimal use of genomic selection in hybrid crop breeding programs remain, such as how to choose founders of heterotic pools, the importance of dominance effects in genomic prediction, the necessary frequency of updating the training set with phenotypic information, and how to maintain genetic variance and prevent fixation of deleterious alleles.

6.
Theor Appl Genet ; 132(6): 1705-1720, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30778634

RESUMO

Genomic selection (GS) models have been validated for many quantitative traits in wheat (Triticum aestivum L.) breeding. However, those models are mostly constrained within the same growing cycle and the extension of GS to the case of across cycles has been a challenge, mainly due to the low predictive accuracy resulting from two factors: reduced genetic relationships between different families and augmented environmental variances between cycles. Using the data collected from diverse field conditions at the International Wheat and Maize Improvement Center, we evaluated GS for grain yield in three elite yield trials across three wheat growing cycles. The objective of this project was to employ the secondary traits, canopy temperature, and green normalized difference vegetation index, which are closely associated with grain yield from high-throughput phenotyping platforms, to improve prediction accuracy for grain yield. The ability to predict grain yield was evaluated reciprocally across three cycles with or without secondary traits. Our results indicate that prediction accuracy increased by an average of 146% for grain yield across cycles with secondary traits. In addition, our results suggest that secondary traits phenotyped during wheat heading and early grain filling stages were optimal for enhancing the prediction accuracy for grain yield.


Assuntos
Genética Populacional , Genoma de Planta , Genômica/métodos , Melhoramento Vegetal/métodos , Seleção Genética , Triticum/genética , Marcadores Genéticos , Fenótipo , Triticum/crescimento & desenvolvimento
7.
Plant Genome ; 10(2)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28724067

RESUMO

High-throughput phenotyping (HTP) platforms can be used to measure traits that are genetically correlated with wheat ( L.) grain yield across time. Incorporating such secondary traits in the multivariate pedigree and genomic prediction models would be desirable to improve indirect selection for grain yield. In this study, we evaluated three statistical models, simple repeatability (SR), multitrait (MT), and random regression (RR), for the longitudinal data of secondary traits and compared the impact of the proposed models for secondary traits on their predictive abilities for grain yield. Grain yield and secondary traits, canopy temperature (CT) and normalized difference vegetation index (NDVI), were collected in five diverse environments for 557 wheat lines with available pedigree and genomic information. A two-stage analysis was applied for pedigree and genomic selection (GS). First, secondary traits were fitted by SR, MT, or RR models, separately, within each environment. Then, best linear unbiased predictions (BLUPs) of secondary traits from the above models were used in the multivariate prediction models to compare predictive abilities for grain yield. Predictive ability was substantially improved by 70%, on average, from multivariate pedigree and genomic models when including secondary traits in both training and test populations. Additionally, (i) predictive abilities slightly varied for MT, RR, or SR models in this data set, (ii) results indicated that including BLUPs of secondary traits from the MT model was the best in severe drought, and (iii) the RR model was slightly better than SR and MT models under drought environment.


Assuntos
Genoma de Planta , Modelos Genéticos , Triticum/genética , Fenótipo , Reprodutibilidade dos Testes , Triticum/crescimento & desenvolvimento
8.
Plant Genome ; 10(2)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28724084

RESUMO

The leaf spotting diseases in wheat that include Septoria tritici blotch (STB) caused by , Stagonospora nodorum blotch (SNB) caused by , and tan spot (TS) caused by pose challenges to breeding programs in selecting for resistance. A promising approach that could enable selection prior to phenotyping is genomic selection that uses genome-wide markers to estimate breeding values (BVs) for quantitative traits. To evaluate this approach for seedling and/or adult plant resistance (APR) to STB, SNB, and TS, we compared the predictive ability of least-squares (LS) approach with genomic-enabled prediction models including genomic best linear unbiased predictor (GBLUP), Bayesian ridge regression (BRR), Bayes A (BA), Bayes B (BB), Bayes Cπ (BC), Bayesian least absolute shrinkage and selection operator (BL), and reproducing kernel Hilbert spaces markers (RKHS-M), a pedigree-based model (RKHS-P) and RKHS markers and pedigree (RKHS-MP). We observed that LS gave the lowest prediction accuracies and RKHS-MP, the highest. The genomic-enabled prediction models and RKHS-P gave similar accuracies. The increase in accuracy using genomic prediction models over LS was 48%. The mean genomic prediction accuracies were 0.45 for STB (APR), 0.55 for SNB (seedling), 0.66 for TS (seedling) and 0.48 for TS (APR). We also compared markers from two whole-genome profiling approaches: genotyping by sequencing (GBS) and diversity arrays technology sequencing (DArTseq) for prediction. While, GBS markers performed slightly better than DArTseq, combining markers from the two approaches did not improve accuracies. We conclude that implementing GS in breeding for these diseases would help to achieve higher accuracies and rapid gains from selection.


Assuntos
Ascomicetos/isolamento & purificação , Perfilação da Expressão Gênica , Modelos Genéticos , Doenças das Plantas/microbiologia , Triticum/microbiologia , Teorema de Bayes , Genes de Plantas , Marcadores Genéticos , Desequilíbrio de Ligação , Fenótipo , Locos de Características Quantitativas , Triticum/genética
9.
Theor Appl Genet ; 130(7): 1415-1430, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28393303

RESUMO

KEY MESSAGE: Genomic prediction for seedling and adult plant resistance to wheat rusts was compared to prediction using few markers as fixed effects in a least-squares approach and pedigree-based prediction. The unceasing plant-pathogen arms race and ephemeral nature of some rust resistance genes have been challenging for wheat (Triticum aestivum L.) breeding programs and farmers. Hence, it is important to devise strategies for effective evaluation and exploitation of quantitative rust resistance. One promising approach that could accelerate gain from selection for rust resistance is 'genomic selection' which utilizes dense genome-wide markers to estimate the breeding values (BVs) for quantitative traits. Our objective was to compare three genomic prediction models including genomic best linear unbiased prediction (GBLUP), GBLUP A that was GBLUP with selected loci as fixed effects and reproducing kernel Hilbert spaces-markers (RKHS-M) with least-squares (LS) approach, RKHS-pedigree (RKHS-P), and RKHS markers and pedigree (RKHS-MP) to determine the BVs for seedling and/or adult plant resistance (APR) to leaf rust (LR), stem rust (SR), and stripe rust (YR). The 333 lines in the 45th IBWSN and the 313 lines in the 46th IBWSN were genotyped using genotyping-by-sequencing and phenotyped in replicated trials. The mean prediction accuracies ranged from 0.31-0.74 for LR seedling, 0.12-0.56 for LR APR, 0.31-0.65 for SR APR, 0.70-0.78 for YR seedling, and 0.34-0.71 for YR APR. For most datasets, the RKHS-MP model gave the highest accuracies, while LS gave the lowest. GBLUP, GBLUP A, RKHS-M, and RKHS-P models gave similar accuracies. Using genome-wide marker-based models resulted in an average of 42% increase in accuracy over LS. We conclude that GS is a promising approach for improvement of quantitative rust resistance and can be implemented in the breeding pipeline.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Basidiomycota , Marcadores Genéticos , Genômica/métodos , Genótipo , Modelos Lineares , Modelos Genéticos , Fenótipo , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Triticum/microbiologia
10.
Front Plant Sci ; 7: 991, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27458472

RESUMO

Current trends in population growth and consumption patterns continue to increase the demand for wheat, a key cereal for global food security. Further, multiple abiotic challenges due to climate change and evolving pathogen and pests pose a major concern for increasing wheat production globally. Triticeae species comprising of primary, secondary, and tertiary gene pools represent a rich source of genetic diversity in wheat. The conventional breeding strategies of direct hybridization, backcrossing and selection have successfully introgressed a number of desirable traits associated with grain yield, adaptation to abiotic stresses, disease resistance, and bio-fortification of wheat varieties. However, it is time consuming to incorporate genes conferring tolerance/resistance to multiple stresses in a single wheat variety by conventional approaches due to limitations in screening methods and the lower probabilities of combining desirable alleles. Efforts on developing innovative breeding strategies, novel tools and utilizing genetic diversity for new genes/alleles are essential to improve productivity, reduce vulnerability to diseases and pests and enhance nutritional quality. New technologies of high-throughput phenotyping, genome sequencing and genomic selection are promising approaches to maximize progeny screening and selection to accelerate the genetic gains in breeding more productive varieties. Use of cisgenic techniques to transfer beneficial alleles and their combinations within related species also offer great promise especially to achieve durable rust resistance.

11.
Plant Genome ; 8(2): eplantgenome2015.01.0002, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33228313

RESUMO

The partial rust resistance genes Lr34 and Sr2 have been used extensively in wheat (Triticum aestivum L.) improvement, as they confer exceptional durability. Interestingly, the resistance of Lr34 is associated with the expression of leaf tip necrosis (LTN) and Sr2 with pseudo-black chaff (PBC). Genome-wide association mapping using CIMMYT's stem rust resistance screening nursery (SRRSN) wheat lines was done to identify genotyping-by-sequencing (GBS) markers linked to LTN and PBC. Phenotyping for these traits was done in Ithaca, New York (fall 2011); Njoro, Kenya (main and off-seasons, 2012), and Wellington, India (winter, 2013). Using the mixed linear model (MLM), 18 GBS markers were significantly associated with LTN. While some markers were linked to loci where the durable leaf rust resistance genes Lr34 (7DS), Lr46 (1BL), and Lr68 (7BL) were mapped, significant associations were also detected with other loci on 2BL, 5B, 3BS, 4BS, and 7BS. Twelve GBS markers linked to the Sr2 locus (3BS) and loci on 2DS, 4AL, and 7DS were significantly associated with PBC. This study provides insight into the complex genetic control of LTN and PBC. Further efforts to validate and study these loci might aid in determining the nature of their association with durable resistance.

12.
G3 (Bethesda) ; 3(3): 427-39, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23449944

RESUMO

Genomic selection, a breeding method that promises to accelerate rates of genetic gain, requires dense, genome-wide marker data. Genotyping-by-sequencing can generate a large number of de novo markers. However, without a reference genome, these markers are unordered and typically have a large proportion of missing data. Because marker imputation algorithms were developed for species with a reference genome, algorithms suited for unordered markers have not been rigorously evaluated. Using four empirical datasets, we evaluate and characterize four such imputation methods, referred to as k-nearest neighbors, singular value decomposition, random forest regression, and expectation maximization imputation, in terms of their imputation accuracies and the factors affecting accuracy. The effect of imputation method on the genomic selection accuracy is assessed in comparison with mean imputation. The effect of excluding markers with a large proportion of missing data on the genomic selection accuracy is also examined. Our results show that imputation of unordered markers can be accurate, especially when linkage disequilibrium between markers is high and genotyped individuals are related. Of the methods evaluated, random forest regression imputation produced superior accuracy. In comparison with mean imputation, all four imputation methods we evaluated led to greater genomic selection accuracies when the level of missing data was high. Including rather than excluding markers with a large proportion of missing data nearly always led to greater GS accuracies. We conclude that high levels of missing data in dense marker sets is not a major obstacle for genomic selection, even when marker order is not known.


Assuntos
Biologia Computacional/métodos , Genoma de Planta , Técnicas de Genotipagem/métodos , Seleção Genética , Algoritmos , Cruzamento/métodos , Simulação por Computador , Marcadores Genéticos , Genótipo , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Análise de Regressão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores de Tempo , Triticum/genética , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...